
Code Generation and Simulation of an Automatic, Flexible QC-LDPC
Hardware Decoder

by

Mirko von Leipzig

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Electronic Engineering in the Faculty of Engineering at

Stellenbosch University

Department of Electrical & Electronic Engineering,
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa

Supervisor: Dr G-J van Rooyen

March 2015

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent expli-
citly otherwise stated), that reproduction and publication thereof by Stellenbosch University
will not infringe any third party rights and that I have not previously in its entirety or in
part submitted it for obtaining any qualification.

Signature: .
M. von Leipzig

November 2014Date: .

Copyright © 2015 Stellenbosch University
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Iterative error correcting codes such as LDPC codes have become prominent in modern
forward error correction systems. A particular subclass of LDPC codes known as quasi-
cyclic LDPC codes has been incorporated in numerous high speed wireless communication
and video broadcasting standards. These standards feature multiple codes with varying
codeword lengths and code rates and require a high throughput. Flexible hardware that is
capable of decoding multiple quasi-cyclic LDPC codes is therefore desirable.
This thesis investigates binary quasi-cyclic LDPC codes and designs a generic, flexible VHDL
decoder. The decoder is further enhanced to automatically select the most likely decoder
based on the initial a posterior probability of the parity-check equation syndromes.
A software system is developed that generates hardware code for such a decoder based on
a small user specification. The system is extended to provide performance simulations for
this generated decoder.

ii

Stellenbosch University https://scholar.sun.ac.za

Uitreksel

Iteratiewe foutkorreksiekodes soos LDPC-kodes word wyd gebruik in moderne voorwaartse
foutkorreksiestelsels. ’n Subklas van LDPC-kodes, bekend as kwasisikliese LDPC-kodes,
word in verskeie hoëspoed-kommunikasie- en video-uitsaaistelselstandaarde gebruik. Hier-
die standaarde inkorporeer verskeie kodes van wisselende lengtes en kodetempos, en vereis
hoë deurset. Buigsame apparatuur, wat die vermoë het om ’n verskeidenheid kwasisikliese
LDPC-kodes te dekodeer, is gevolglik van belang.
Hierdie tesis ondersoek binêre kwasisikliese LDPC-kodes, en ontwerp ’n generiese, buigsame
VHDL-dekodeerder. Die dekodeerder word verder verbeter om outomaties die mees waar-
skynlike dekodeerder te selekteer, gebaseer op die aanvanklike a posteriori-waarskynlikheid
van die pariteitstoetsvergelykings se sindrome.
’n Programmatuurstelsel word ontwikkel wat die fermware-kode vir so ’n dekodeerder gene-
reer, gebaseer op ’n beknopte gebruikerspesifikasie. Die stelsel word uitgebrei om werksver-
rigting te simuleer vir die gegenereerde dekodeerder.

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people:

• my parents, for their support, concern and motivation,

• my sister, for her company and constant niggling,

• Gert-Jan van Rooyen, for being a valuable bouncing board for my ideas,

• my friends, for their critique and distractions.

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Uitreksel iii

Acknowledgements iv

List of Figures vii

List of Code Snippets x

Nomenclature xi

List of Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Motivation for Work . 1
1.3 Objectives . 2
1.4 Contributions . 2
1.5 Thesis Overview . 3

1.5.1 Existing Literature . 3
1.5.2 System Overview . 4
1.5.3 Hardware Decoder Design and Code Generation 4
1.5.4 Simulation System . 4

2 Literature Review 5
2.1 Digital Communications and Error Correction History 5
2.2 LDPC Code History . 7
2.3 Iterative Codes and the Sum-Product Algorithm 7

2.3.1 Acyclic Factor Graphs . 8
2.3.2 Cyclic Factor Graphs . 14

2.4 LDPC Decoding . 15
2.4.1 LDPC Codes Message Formats . 17
2.4.2 Parity-Check Message Approximations 19
2.4.3 LDPC Message Passing Algorithms . 20

2.5 General LDPC Encoding . 21
2.5.1 Lookup Table . 21
2.5.2 Triangular Parity-Check Matrix . 21
2.5.3 Approximate Triangular Parity-Check Matrix 22
2.5.4 Block-Triangular parity-check Matrix 22
2.5.5 Generic Graph Based Algorithm . 23

v

Stellenbosch University https://scholar.sun.ac.za

CONTENTS vi

2.6 Quasi-cyclic LDPC codes . 26
2.7 LDPC Code Detection . 28

3 System Design 29
3.1 Decoder Concept . 30
3.2 Simulation Subsystem . 31
3.3 Code Generation Subsystem . 32

4 Hardware Design 34
4.1 Clock Synchronisation . 34
4.2 Message Format . 34
4.3 Transcendental Functions . 35
4.4 Fixed Point versus Floating Point . 35
4.5 Sign Magnitude versus Two’s Complement Format 35
4.6 Message Passing Schedule . 35
4.7 Decoder Design . 36

4.7.1 Interconnection Network . 37
4.7.2 Bit Module . 41
4.7.3 RAM . 43
4.7.4 ROM . 45
4.7.5 Parity-check Module . 45
4.7.6 Detection Module . 46
4.7.7 Control Module . 48
4.7.8 Timing Overview . 49

5 Software Design 52
5.1 Code Generation Subsystem . 53
5.2 Simulation Subsystem . 55
5.3 Test Environment . 59

6 Simulation Results 62

7 Conclusion 68

A IEEE 802.11n 70

Bibliography 74

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 A basic communications system. 5
2.2 General APP factor graph. 9
2.3 APP example factor graph. 10
2.4 APP example: step 1. 11
2.5 APP example: step 2. 12
2.6 APP example: step 3. 12
2.7 APP example: step 4. 13
2.8 APP example: step 5. 13
2.9 APP example: final calculations at variable nodes. 14
2.10 A Tanner graph and its parity matrix. 16
2.11 Parity matrix in upper-triangular form. 21
2.12 Parity matrix in approximate upper-triangular form. 22
2.13 A parity-check matrix and its pseudo-tree. 24
2.14 A stopping set graph and its parity matrix. 25
2.15 Bit node degree reduction. 26
2.16 QC-LDPC code example and its layered decoding Tanner graph. 27

3.1 Black box system overview. 29
3.2 Configuration parsing. 30
3.3 Decoding process. 30
3.4 Decoder state machine . 31
3.5 Simulated communications process. 32
3.6 Code generation subsystem. 33

4.1 Decoder module connections. 37
4.2 Barrel rotation to the right. 38
4.3 QSN example. 40
4.4 A parallel interconnection network. 40
4.5 RAM II model. 43
4.6 RAM III model. 44
4.7 RAM I model. 44
4.8 Iteration zero timing diagram . 50
4.9 Initial-pass timing diagram . 50
4.10 Secondary-pass timing diagram . 51
4.11 Detection mode timing diagram . 51

6.1 Comparison of parity-check syndrome functions. 63
6.2 Comparison of message LSB indices. 63
6.3 Comparison of message bit lengths. 64
6.4 Comparison of number of parity-check syndromes used for detection. 65
6.5 Comparison of detection algorithms. 65
6.6 Comparison of the optimal decoder and our design. 66

vii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES viii

6.7 Average decoding iterations used. 66
6.8 Average decoding iterations used. 67
6.9 IEEE 802.11n codes’ BER. 67

A.1 IEEE 802.11n code characteristics. 70
A.2 Permutation Matrix: IEEE 648 1/2 . 71
A.3 Permutation Matrix: IEEE 648 2/3 . 71
A.4 Permutation Matrix: IEEE 648 3/4 . 71
A.5 Permutation Matrix: IEEE 648 5/6 . 71
A.6 Permutation Matrix: IEEE 1296 1/2 . 72
A.7 Permutation Matrix: IEEE 1296 2/3 . 72
A.8 Permutation Matrix: IEEE 1296 3/4 . 72
A.9 Permutation Matrix: IEEE 1296 5/6 . 72
A.10 Permutation Matrix: IEEE 1944 1/2 . 73
A.11 Permutation Matrix: IEEE 1944 2/3 . 73
A.12 Permutation Matrix: IEEE 1944 3/4 . 73
A.13 Permutation Matrix: IEEE 1944 5/6 . 73

Stellenbosch University https://scholar.sun.ac.za

List of Algorithms

1 QSN rotate right algorithm. 39
2 Bit node sending algorithm. 42
3 Bit node receiving algorithm. 43
4 Parity-check unit execution for a single layer of a code. 47
5 Detection module using the parity-check syndromes. 48

ix

Stellenbosch University https://scholar.sun.ac.za

List of Code Snippets

5.1 XML code set file. 52
5.2 XML block size, permutation matrix code description. 53
5.3 XML block size, matrix file code description. 53
5.4 XML built-in code description. 53
5.5 Go Programming Language function definition. 55
5.6 Go Programming Language interface example 56
5.7 Encoding and transmission function prototypes. 57
5.8 Simulation configurations. 57
5.9 Higher order function example. 58

x

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Vectors and Matrices

x Row vector

xT Column vector

xi Element i of vector x

X Matrix

Xi,j Element in row i, column j of matrix X

Messages and Nodes

vi Variable node i

fj Function node j

Qi-j Message from some node i to node j

Q0
i-j Message containing the probability of a bit being zero

Q1
i-j Message containing the probability of a bit being one

QD
i-j Message containing the probabilities of a bit being zero or one as a tuple

QLR
i-j Message containing the likelihood ratio of a bit

QLLR
i-j Message containing the log-likelihood ratio of a bit

Variables

Eb Energy per bit

η Normalising constant

ε Binary symmetric channel crossover probability

n Codeword length i.e. number of bits

m Number of parity equations i.e. number of parity bits

nb Quasi-cyclic LDPC parity matrix block columns

mb Quasi-cyclic LDPC parity matrix block rows

B Block size

Π Quasi-cyclic LDPC permutation value

xi

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xii

Π Quasi-cyclic LDPC permutation matrix

G Global function

Gi Marginal function i of global function G

g Local factor function of global function G

σ Transmission medium

C A code

γ Characteristic function

α Key parity-check node used in stopping-set encoding

β Key parity bit node used in stopping-set encoding

Γθ Average syndrome log-likelihood of code Cθ

Operators
∼i
�
j

Perform operation � over all valid values of j excluding i

⊕ Logical XOR operation

ln Natural logarithm function

e Natural exponent

sgn Signum function

L(x) Log-likelihood of x

Stellenbosch University https://scholar.sun.ac.za

List of Abbreviations

APP a posteriori probability

BER bit error rate

BPSK binary phase-shift key

FEC forward error correction

GPL Go Programming Language

IP intellectual property

LDPC low-density parity-check

LLR log-likelihood ratio

LSB least significant bit

QC-LDPC quasi-cyclic low-density parity-check

RAM random-access memory

ROM read-only memory

SPA sum-product algorithm

SNR signal-to-noise ratio

VHDL VHSIC Hardware Description Language

XML Extensible Markup Language

xiii

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

In recent years low-density parity-check (LDPC) codes have been included in multiple com-
munications standards [1]. These standards usually include multiple LDPC codes with
different code rates [1]. In this thesis a hardware decoding system capable of supporting
an arbitrary set of binary, structured LDPC codes is developed. The decoder can support
codes of different rates as well as different block sizes. The decoder is further developed
to automatically select and decode the most likely code of the set. Applications of this
technology include cognitive radio receivers and systems in which the encoder and decoder
have no means to communicate a change in code.

1.1 Background

Modern digital communications systems need to communicate information across noisy me-
diums or channels [2]. This is usually achieved by encoding the information bits into code-
word bits at the sender. The encoding process adds redundant data to the information data
according to some deterministic algorithm [2], which in turn allows the receiver to correct
errors in the received data. This error correction can be achieved according to one of two
general methodologies. The automatic repeat request methodology detects errors in the
received data and requests a retransmission of the data if any are found [2]. The forward
error correction (FEC) methodology uses the redundant data to correct errors, if any, in the
received data without requiring retransmission [2].
The Shannon capacity of a channel is the upper bound on the rate of information transfer
for a given channel bandwidth and signal-to-noise (SNR) power ratio with an arbitrarily
small error probability [3]. In the 1990s, a family of FEC codes known as Turbo codes were
discovered [3]. Turbo codes were the first codes capable of nearing the Shannon capacity of
a channel. Prior to their discovery, it was believed that gains in channel capacity required
increasing decoding complexity [3]. Turbo codes disproved this belief and consequently
became widely adopted [2]. This led to vigorous investigation of other, similar codes. One
such code family are the LDPC codes [3]. These LDPC codes are named for their sparse
parity-check matrix.

1.2 Motivation for Work

LDPC codes have shown similar error correcting performance to Turbo codes at high code-
word lengths and rates [3]. They have been incorporated into numerous communication’s
standards, particularly in the high-speed video broadcast and wireless communications areas
[1]. LDPC decoding complexity is linear with respect to codeword length while encoding
is quadratic [4]. The long codeword length and high bit rate requirements of most stand-

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

ards incorporating LDPC codes cause both encoding and decoding speed to be issues in
most designs [1]. LDPC codes are therefore often structured to help speed up encoding and
decoding [1] such that both encoding and decoding of these structured codes is inherently
parallel. Decoders for structured codes are therefore typically built on custom hardware [1]
in order to meet the stringent speed requirements.
LDPC codes exist mainly as binary codes, however q-ary LDPC codes can and have been
constructed. This thesis focuses exclusively on binary codes, however similar concepts could
be used to incorporate q-ary codes.
Most standards specify multiple LDPC codes within a single standard [1], including codes of
different codeword lengths and code rates. This calls for flexible hardware decoders capable
of decoding any of the codes specified by a standard [1]. It would be beneficial if such
a decoder design could easily be adapted to different standards without much effort. A
system that generates code based on some user configuration solves this need. Compiling,
synthesising and testing large hardware designs is time consuming [5]. It is therefore of
use to have a means of simulating the performance of the hardware decoder prior to the
implementation thereof, to allow the user to make configuration tweaks to better meet the
expectations.
This work investigates binary LDPC codes and the design of an autonomous, flexible decoder
capable of decoding a set of structured LDPC codes, as well as a code generation system
that generates hardware code for such a decoder. A simulation package is also developed to
simulate the performance of the decoder.

1.3 Objectives

The objectives of this thesis are to

• design a flexible hardware decoder for arbitrary, structured LDPC codes,

• automate the decoder in so far as possible,

• design software to generate the hardware code for such a decoder based on user con-
figuration,

• simulate such a decoder’s performance.

1.4 Contributions

This thesis makes the following contributions.

• We investigate and compile a wide range of existing LDPC decoding and encoding
techniques.

• We investigate the proposed technique of Xia et al. [6] which allows us to find the
most likely code of a set based on the received codeword. We show that this technique
can be exploited at minimal extra cost to allow our decoder to autonomously select
the correct code during the decoding process.

• We develop a software tool capable of generating code for a hardware decoder based
on user configuration.

• We also develop a software model of the hardware decoder. This, coupled with software
models of the communications system, allows us to simulate the performance of a
decoder under certain channel and modulation conditions. This gives feedback to

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

the user without the user needing to test the hardware directly. Software simulation
is much quicker and does not require the recompilation of a large hardware project
when the configuration changes. These simulation models are abstract and the set of
available models can be extended to add more simulation options e.g. more channel
models or modulation schemes.

1.5 Thesis Overview

During the investigation of LDPC codes a number of topics were covered. An overview of
the main points is covered here.

1.5.1 Existing Literature
FEC codes, prior to the emergence of Turbo codes in 1993, used non-iterative decoding
algorithms i.e. the codeword bits obtained their final, correct values after a single execution
of the relevant decoding algorithm [3]. Turbo codes and other modern codes, including
LDPC codes, utilise an iterative decoding process. In the iterative decoding process, the
codeword bits undergo multiple iterations of updating their values.
The sum-product algorithm (SPA) [7] generalises algorithms commonly used in the artificial
intelligence, digital communications and signal processing communities such as the Viterbi
algorithm, the forward/backward algorithm and the Kalman filter [7]. In sections 2.3.1
and 2.3.2 the SPA is covered and use it to establish a link between iterative and non-
iterative codes. The SPA operates on a graph created by factorising a complicated global
function into the product of simpler factor functions [7]. In non-iterative codes, this graph
is cycle free and the SPA gives an exact result. In iterative codes, the graph contains cycles
and the SPA gives only an approximate result. The SPA is therefore executed iteratively
on graphs with cycles in order to achieve a better approximation.
In section 2.4 we cover the derivation of the iterative LDPC decoding algorithm from the
SPA. We start with the general a posteriori probability (APP) equation and show how this
leads to the general iterative LDPC decoding algorithm.
Various approaches to lessening the computational load of the decoding process are dis-
cussed in sections 2.4.1 and 2.4.2. This includes numerical approximations, probability and
likelihood formats, as well as likelihood update schedules.
LDPC encoding has a quadratic encoding complexity with respect to codeword length [4].
This is a problem because LDPC codeword length needs to be large in order to achieve good
performance [8]. Several general approaches exist to deal with this issue, some of which
are covered in section 2.5. In general, these approaches require a specific code structure.
Two of the more promising approaches which can be applied to arbitrary LDPC codes, and
guarantee linear encoding performance, are also covered.
Quasi-cyclic LDPC (QC-LDPC) codes are a structured subset of LDPC codes. A QC-LDPC
code’s parity matrix can be divided into equally sized blocks. Each block is either the zero
matrix, or a shifted identity matrix. This builds an inherent parallel capability into the
code as each bit and parity equation will feature at most once in a block. Furthermore,
each block can be represented using a simple rotation module. This is useful for simplifying
the connection system, which is usually the largest consumer of hardware real estate in a
hardware implementation [1]. QC-LDPC codes are covered in more detail in section 2.6.
Standards implementing QC-LDPC codes usually define multiple such codes, with multiple
different code rates and block sizes. It therefore becomes important to have flexible decoders
capable of supporting variable code rates and block sizes. It may also be beneficial to have
autonomous decoders, capable of detecting a change of code at the encoder. Xia et al. [6]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

suggest using the average syndrome APP to select the most likely LDPC code from a set of
predefined codes. This technique is fully explained in section 2.7.

1.5.2 System Overview
The aim of this project is to create a software tool concerned with the code generation and
performance simulation of a hardware QC-LDPC decoder.
The developed tool is split into two distinct systems: the hardware code generation system
and the simulation system.
The code generation system takes a set of QC-LDPC code descriptions as input. These are
used to generate various files containing the hardware decoder code. These files can then be
compiled and synthesised into a working decoder and run on some target hardware system.
The simulation system likewise requires a set of QC-LDPC codes as input. It uses this code
set to simulate various decoder performance properties such as the bit error rate and code
misidentification rate across a range of SNR values. This is detailed fully in section 3

1.5.3 Hardware Decoder Design and Code Generation
A simple hardware decoder is developed in section 4. It is capable of supporting mul-
tiple codes, with different code rates and block sizes. In doing so, we investigate multiple
techniques to reduce the area and increase the speed of the decoder, particularly in the
inter-routing network of the decoder, which typically consumes the most resources [1].
We further extend the design by incorporating the technique of Xia et al. [6] at minimal
speed loss. This allows the decoder to decide which code of the set is the most likely to be
active currently. This lets our decoder design become fully autonomous.
The developed software tool takes a set of QC-LDPC codes, and other user options (e.g.
maximum iterations), and outputs hardware code files which can be compiled into the
autonomous, flexible decoder. This decoder is then specific to the set of QC-LDPC codes.
This tool is elaborated on in section 5.1.

1.5.4 Simulation System
The simulation tool is discussed in section 5.2. It allows the user to specify channel and
modulation conditions in addition to the decoder configuration. These are used to provide
meaningful feedback to the user about the decoder’s expected performance under these
conditions. The feedback is provided by means of graphs and includes average bit error
rate, average code misidentification rate, as well as bit error and code misidentification rates
for each code.
The overall simulation system inputs are designed to be abstract. In our simulations, we
implement only Gaussian noise channel models. The abstract nature of the system makes
it very easy to add a new channel and other parameter models pertinent to the simulations.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

In this chapter we discuss existing literature pertaining to LDPC codes. We cover the early
history of error correction in digital communications and how this led to the development and
rise of iterative codes such as LDPC codes. The SPA is explained in section 2.3. We present a
simple step-by-step example applying the SPA and show how the LDPC decoding algorithm
can be derived from the general SPA. We link iterative and non-iterative codes using the SPA
as a common starting point. In section 2.4 we derive common LDPC decoding algorithm
approximations and discuss the implications of number formats on decoding complexity.
Section 2.5 discusses various attempts at gaining linear encoding complexity, including two
methods that manage to guarantee linear complexity for arbitrary LDPC codes. We then
focus on structured LDPC codes, called QC-LDPC codes, which are commonly implemented
[1]. Finally, we discuss a method proposed in [6], that allows for selecting the most likely
code of a set for a received codeword.

2.1 Digital Communications and Error Correction History

A basic communication system requires a sender, a receiver and a means to transport the
information from the former to the latter. This transportation medium is commonly known
as a channel [3]. The information may become distorted during transport due to interference
on the channel. This distortion is usually called noise [3]. Figure 2.1 shows this basic
communications system.
Originally, telecommunications systems used analogue signals to convey information [3].
These analogue signals become distorted prior to arriving at the receiver. At the receiver, a
signal estimator uses the received noisy signal to provide an approximation of the original
signal [3]. Analogue signals, by definition, allow for an infinite variation of possible values.
This means that the receiver is never certain of the accuracy of the approximation.
The rise of digital communications over analogue started with the work of Nyquist in 1928
[3]. Nyquist proved that a band-limited signal can be perfectly reconstructed from a finite

Sender Channel Receiver

Noise

Figure 2.1 – A basic communications system.

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 6

set of discrete-time samples of the signal [3]. In 1948 Shannon built on this by proving that
these discrete samples could be represented by a finite number of amplitudes [3], dependent
on the noise level. Combined, Nyquist and Shannon’s work imply that any band-limited
signal can be completely described by a finite set of discrete-time digital values even in the
presence of noise. This led to the development of digital communications systems.
In a digital system, information needs to be in digital format before it can be sent. In
a binary digital system this may require converting the information to a series of 1’s and
0’s called bits. These bits then get mapped to waveforms which can be transmitted across
the channel [2]. This process is called modulation. A simple example is binary phase-shift
key (BPSK) modulation. In BPSK a 1 is mapped to +Eb and a 0 to −Eb, where Eb is
the bit energy [2]. Prior to the development of error correction codes, these modulation
schemes were the only way of combating the errors caused by noise [3]. At the receiver, a
demodulator takes the received, distorted waveform and makes a hard decision about the
bit’s value, based on whether a 1 or 0 is more likely. In the case of BPSK a demodulator
would map any received waveform above zero to a 1, and below to a 0. An error would
therefore occur if noise distorted the waveform to flip around the zero mark. The rate of
these errors is directly correlated to the signal-to-noise power ratio (SNR) [2]. As the noise
power cannot be controlled, it was believed that only by increasing waveform power, Eb,
could one improve error performance [3].
Error correction coding started with another of Shannon’s works, namely his famous channel
capacity theorem [3]. Shannon proved that arbitrarily small error rates can be achieved for
a noisy channel, as long as the bit transmission rate is lower than the channel’s capacity [3].
This capacity is often called the Shannon capacity of a channel [2]. Shannon’s work proved
that smart encoding and decoding of digital signals could drastically improve a communic-
ations system’s performance without requiring an increase in power [3]. Unfortunately, the
proof does not include information on how these codes should be structured to achieve this
[3].
The earliest codes could only perform error checking i.e. they could only detect whether or
not an error had occurred. A simple example of such a code is the parity bit. In a parity
bit code, a single bit is added to the information bits. This bit is called the parity bit and
together with the information bits forms the codeword. The parity bit is used to ensure that
the codeword as a whole has either an odd number of 1’s (odd parity) or an even number of
1’s (even parity) – the choice of which parity is arbitrary. This allows the receiver to detect
if an odd number of errors occurred as the parity of the codeword would be incorrect.
Hamming and Golay were the first to develop error codes capable of detecting and correcting
errors [3]. Hamming codes function by having multiple parity bits mixed in between the
information bits. The parity bits are positioned such that, if the bits are indexed starting
from 1, they cover every index number whose binary representation contains only a single 1
[2]. The parity bits values are further only calculated using a subset of the codeword bits.
A parity bit covers all the bits whose index yield a non-zero result when logically AND’ed
with the parity bit’s index [2]. Error’s in the parity bits are detected as usual – if the overall
parity is incorrect, an error has occurred. When an error is detected, adding the positions
of all the parity bits that indicated an error will result in the position of the erroneous bit
[2]. Hamming codes therefore allow the detection and correction of a single bit error.
Early error correction decoders, such as for the Hamming and Golay codes, exclusively used
the hard decision bit outputs of a demodulator. Modern codes often utilise soft-decision
decoding which skips the demodulator completely [3]. Each bit is attributed a probability
for being a 1 or a 0 based on the received waveform and the channel model. The entire
codeword is then analysed using each bit’s probabilities to find the most likely codeword
[2]. Examples of such codes are the Viterbi codes, convolutional codes and includes iterative
codes, such as the LDPC codes we are focussing on.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 7

The driving goal for the field of error correction has always been to get as close as possible
to the Shannon capacity of a channel [3]. This would allow for the highest efficiency in
terms of bandwidth and power used for effective bit rate [3]. The discovery and adoption of
iterative codes such as Turbo and LDPC codes have dramatically narrowed the gap to the
Shannon capacity [3].

2.2 LDPC Code History

LDPC codes and their iterative decoding techniques were first proposed in Gallager’s 1963
paper [22]. The computational requirements of the codes did not allow them to be imple-
mented at the time (Gallager could only simulate low noise situations using small codeword
lengths [22]) and LDPC codes were forgotten.
In 1993 Turbo codes were introduced by Berrou et al. [37]. Turbo codes utilise an iterative
decoding method which relies heavily on APP obtained using the method proposed by Bahl
et al. [38]. Turbo codes became widely adopted due to their ability to approach the Shannon
channel capacity [2] which led to a surge in the research of iterative decoding techniques. In
1996 Gallager’s paper [22] and LDPC codes were rediscovered by MacKay et al. [23].
Initially LDPC code performance lagged behind that of Turbo codes, but have recently
surpassed them at higher code rates [3]. LDPC codes have since been adopted by many
communications standards particularly in the video broadcast [41; 42; 43] and high speed
Wi-Fi [44; 45; 47; 13; 46] domains.

2.3 Iterative Codes and the Sum-Product Algorithm

This section discusses the SPA and its application in iterative decoding as used in LDPC
codes. It provides a link between iterative and non-iterative decoding and is a summary of
the work of Kschischang et al. [7].
The sum-product algorithm1 is a general theory that allows calculation of marginal values in
complex systems [7]. It is a generalisation of many popular probability inference algorithms
in the fields of artificial intelligence, statistical modelling and digital communications [7].
Examples include the BCJR forward-backward algorithm [38], the Viterbi algorithm, Kal-
man filters and, more specifically for this paper, iterative decoding algorithms such as those
used by Turbo codes and LDPC codes. Each of these examples employs some version of the
sum-product algorithm [7].
The notation used will be similar to that of Kschischang et al. [7] for simplicity. Given a
set of variables x = {x1, ..., xn} which form part of some global function G(x), then there
exist n marginal functions Gi(xi). A marginal function is defined as

Gi(xi) =
∑
x1

...
∑
xi−1

∑
xi+1

...
∑
xn

G(x) (2.3.1)

where
∑
xj

G(x) indicates summation over G(x) for all values of xj . Note the absence of the

variable xi in the summations of (2.3.1). The marginal is computed by summing over all
variations of the global function excluding the variable being marginalised. Such operations
will be required often in this writing, and as such a short notation for it is presented as

∼i
�
j

1An alternative explanation using the distributive law is available in [26]. The sum-product approach is
chosen here as it has closer ties to existing graphical models of LDPC codes.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 8

which implies performing the operation � for all valid j values except i. (2.3.1) can then be
simply rewritten as

Gi(xi) =
∼xi∑
xj

G(x) (2.3.2)

The purpose of the sum-product algorithm is to efficiently compute marginals, reusing partial
sums where possible [7]. It does this by factorising the global function into smaller, local
functions which can be represented accurately using a factor graph.
A factor graph is a bipartite graph in which one node set v = {vx1 , ..., vxn} represents the
variables {x1, ..., xn} and the other node set f = {fg1 , ..., fgm} represents the factorised local
functions {g1(x1), ..., gm(xm)} such that

G(x) =
∏
i

gi(xi) xi ⊆ x

The factor graph of G(x) contains n variable nodes v and m function nodes f . An edge is
formed between nodes vxi and fgj if xi ∈ xj of the local factor function gj(xj).
The sum-product algorithm only gets exact marginals when applied on a cycle-free factor
graph [7]. The next section discusses the execution of the sum-product algorithm on cycle-
free graphs, followed by a discussion on graphs containing cycles.

2.3.1 Acyclic Factor Graphs
If a graph is cycle free, every node has at most one path to any other node. This makes
it trivial to transform the graph into a tree with an arbitrary node as the root node. A
marginal Gi(xi) is calculated by choosing variable node vi to be the root node of the tree.
Information is exchanged between nodes by passing messages along edges. A message from
some node a to node b will be denoted by Qa-b.
Computation starts in the leaf nodes where each variable leaf node passes an identity function
message to its parent and each function leaf node passes a description of its function. Each
internal node then waits for messages from all of its child nodes to arrive before computing
the message to its parent. In such a manner, messages travel up the tree until they reach
the root where the final marginal is computed. A variable node va computes the message
to its parent function node fb as the product of the messages received from its children i.e.

Qva-fb =
∼b∏
i

Qfi-va (2.3.3)

A function node fb computes the message to its parent variable node va by executing its
function on the messages received from its children and then marginalises out its parent
variable using (2.3.2) i.e.

Qfb-va =
∼a∑
i

gb(Qvi-fb) (2.3.4)

As one can see in (2.3.3) and (2.3.4), the sum-product algorithm was aptly named after
the only operations it requires, namely summation and multiplication. It is also possible to
calculate (2.3.3) as

Qva-fb = Qfk-va ·
∼b,k∏
i

Qfi-va (2.3.5)

and (2.3.4) as

Qfb-va = Qvk-fb +
∼a,k∑
i

gb(xb) (2.3.6)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 9

which shows the possibility of calculating (2.3.3) and (2.3.4) recursively as

θ(Q1, ..., Qn) = θ(Q1, θ(Q2, ..., Qn)) (2.3.7)

where θ represents the relevant function.
In order to compute all n marginals it is possible to avoid repeating the full computations
(and graph restructuring) by employing the full sum-product algorithm [7]. In this algorithm
no node is chosen as the root but computation still begins at the leaf nodes. Each vertex now
waits until it has received messages from all but one neighbour. It then forms a message in
the same manner as before and sends it to this neighbour – essentially treating this neighbour
as its parent. It then awaits a return message. Once received it can form messages to the
rest of its neighbours, treating each as a parent node in turn. The algorithm terminates
once messages have traversed an edge in both directions.
This algorithm works for any system in which multiplication and addition are well defined
and the corresponding factor graph is cycle free. Here is an example taken from [27] to
illustrate how the sum-product algorithm is expressed as the well known APP algorithm.
Given a sequence y = {y1, ..., yn} received from a memoryless channel σ, the APP distribu-
tion G(x) for the original codeword symbols x = {x1, ..., xn} of some code C is proportional
to

G(x) = σy(x)p(x)

where σy(x) is the channel conditional probability density function for a given y and p(x)
is the a priori probability distribution of x. One can factorise σy(x) as follows because the
channel is memoryless:

σy(x) =
∏
i

σi(xi)

resulting in
G(x) = p(x)

∏
i

σi(xi)

The factor graph for this general APP distribution function is show in figure 2.2.
If each codeword is equally likely then according to [7] the a priori probability distribution
can be written as

p(x) = 1
|C|

γC

where |C| is the number of codewords in C and γC the characteristic function of C. This
characteristic function can often also be factorised.

fσ1

vx1

fσn

vxn

fσi

vxi

fγC

...

...

...

...

Figure 2.2 – General APP factor graph.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 10

For a code, the characteristic function is simply an indicator function which indicates mem-
bership of the code set. For the following binary code

C = {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)}

the indicator function can be represented as

γC = [x1 ⊕ x2 = x3 = x4]

where x = {x1, x2, x3, x4} are the code bits and ⊕ represents the logical XOR operation.
This constraint can be split into two simpler functions by making use of an intermediary
variable z such that

γ1 = [x1 ⊕ x2 ⊕ z = 0]
γ2 = [x3 = x4 = z]

and
γC = γ1 · γ2

The APP distribution function then becomes

G(x) = γ1 · γ2 ·
∏
i

σi(xi)

where the constant 1
|C| has been dropped for simplicity. The factor graph representing this

is shown in figure 2.3.
Messages in a soft decoding algorithm usually contain two pieces of information, namely the
probability that some bit is a zero and the probability that it is a one. Let this information
be represented as Q0

a-b and Q1
a-b respectively for some message Qa-b.

To illustrate how the message passing works in practice, let the memoryless channel σ
be a binary symmetric channel with crossover probability ε and the received codeword
y = {0, 0, 1, 0}. All messages will be sent as 2-tuples i.e.

QD
a-b = (Q0

a-b , Q
1
a-b)

Important to note is that every internal variable node in this graph is of degree two. This
implies that messages received on one edge can simply be sent out on the other edge with
no computation required [7].
The characteristic sub-function nodes fγ1 and fγ2 operate as follows to marginalise out a
variable q:

r = (a , b) s = (c , d)

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.3 – APP example factor graph.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 11

∼q∑
i

fγ1(q, r, s) = (a· c+ b· d , a· d+ b· c)

∼q∑
i

fγ2(q, r, s) = (a· c , b· d) · η

where η is a normalising factor
η = 1

a· c+ b· d

The algorithm starts in the leaf nodes, namely function nodes fσi , which send messages
Qfσi -vxi to the codeword symbol variable nodes vxi . For this example the messages would
be

QD
fσ1 -vx1

= (Pr(x1 = 0) , Pr(x1 = 1)) = (1− ε , ε)

QD
fσ2 -vx2

= (Pr(x2 = 0) , Pr(x2 = 1)) = (1− ε , ε)

QD
fσ3 -vx3

= (Pr(x3 = 0) , Pr(x3 = 1)) = (ε , 1− ε)

QD
fσ4 -vx4

= (Pr(x4 = 0) , Pr(x4 = 1)) = (1− ε , ε)

This allows the variable nodes vxi to compute their messages to their respective characteristic
sub-function nodes fγ1 and fγ2 as

QD
vx1 -fγ1

= (1− ε , ε)

QD
vx2 -fγ1

= (1− ε , ε)

QD
vx3 -fγ2

= (ε , 1− ε)

QD
vx4 -fγ2

= (1− ε , ε)

These characteristic sub-function nodes then calculate the marginal probabilities messages
for variable node vz as

QD
fγ1 -vz =

(
(1− ε)2 + ε2 , 2ε− 2ε2)

QD
fγ2 -vz =

(
(1− ε)2 + ε2 , (1− ε)2 + ε2) · ηA

ηA = 1
2(1− ε)2 + 2ε2

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.4 – APP example: step 1.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 12

vz can then immediately send these messages on to the other characteristic sub-function
node fγ2

QD
vz-fγ2

= QD
fγ1 -vz

=
(
(1− ε)2 + ε2 , 2ε− 2ε2)

and fγ1

QD
vz-fγ1

= QD
fγ2 -vz

=
(
(1− ε)2 + ε2 , (1− ε)2 + ε2) · ηA

= (0.5 , 0.5)

The characteristic sub-function nodes can now compute their marginals for the variable

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.5 – APP example: step 2.

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.6 – APP example: step 3.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 13

nodes vxi

QD
fγ1 -vx1

= (0.5 · (1− ε) + 0.5 · ε , 0.5 · ε+ 0.5 · (1− ε))

= (0.5 , 0.5)
QD
fγ1 -vx2

= (0.5 · (1− ε) + 0.5 · ε , 0.5 · ε+ 0.5 · (1− ε))

= (0.5 , 0.5)
QD
fγ2 -vx3

=
(
(1− ε) · ((1− ε)2 + ε2) , ε· (2ε− 2ε2)

)
· ηB

=
(
1− 3ε+ 4ε2 − 2ε3 , 2ε2 − 2ε3) · ηB

QD
fγ2 -vx4

=
(
ε· ((1− ε)2 + ε2) , (1− ε) · (2ε− 2ε2)

)
· ηC

=
(
ε− 2ε2 + 2ε3 , 2ε− 4ε2 + 2ε3) · ηC

ηB = 1
1− 3ε+ 6ε2 − 4ε3

ηC = 1
2ε− 6ε2 + 4ε3

Technically, the algorithm continues by passing messages down to the channel conditional
probability function nodes fσi . This is not necessary in this specific case as these are static
functions and cannot change, and also cannot pass messages on further. The APP for each
bit xi can now be computed as the product of all the received messages of variable node vxi .

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.7 – APP example: step 4.

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.8 – APP example: step 5.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 14

fσ1

vx1

fσ2

vx2

fσ3

vx3

fσ4

vx4

fγ1 fγ2vz

Figure 2.9 – APP example: final calculations at variable nodes.

This gives the following un-normalised probabilities:

G1(x1) = (0.5 · (1− ε) , 0.5 · ε)
G2(x2) = (0.5 · (1− ε) , 0.5 · ε)
G3(x3) =

(
(1− 3ε+ 4ε2 − 2ε3) · ε , 2ε− 4ε2 + 2ε3 · (1− ε)

)
· ηB

G4(x4) =
(
(ε− 2ε2 + 2ε3) · (1− ε) , (2ε− 4ε2 + 2ε3) · ε

)
· ηC

ηB = 1
1− 3ε+ 6ε2 − 4ε3

ηC = 1
2ε− 6ε2 + 4ε3

For a crossover probability of ε = 0.1 the normalised APP are

G1(x1) = (0.9 , 0.1)
G2(x2) = (0.9 , 0.1)
G3(x3) = (0.82 , 0.18)
G4(x4) = (0.82 , 0.18)

2.3.2 Cyclic Factor Graphs
The previous section explained the usage of the sum-product algorithm on graphs containing
no cycles. The concept for graphs containing cycles and the message forming rules are the
same, however the message passing changes to an iterative version. The issue with the
cycle-free message passing algorithm is that nodes forming a cycle will never start passing
messages. Each node in a cyclic sub-graph has two edges within the sub-graph. This means
that every node in the sub-graph is waiting on messages from the other nodes resulting in
a deadlock.
This issue is solved by assuming every node receives a unit message on each of its edges at
the start of the algorithm [7], allowing every node to compute messages right from the start.
If this is done in a cycle-free graph, the message passing will eventually come to a natural
halt. In a graph with cycles the message passing never terminates naturally, as a message
sent between two nodes in a cycle will propagate through the cycle until it reaches the
original sender node, which prompts it to send a new message again, restarting the process.
Message passing in cyclic graphs therefore needs some form of halt condition – usually until
some maximum number of iterations has been reached or convergence has been determined.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 15

As mentioned previously, the sum-product algorithm only calculates exact solutions when
operating on cycle-free factor graphs. When executed iteratively, the sum-product algorithm
produces approximate solutions [7]. Despite that, codes using the iterative algorithm such
as LDPC and Turbo codes are capable of good error correcting performance. The exact
reasons for this are the topic of much research currently [7]

2.4 LDPC Decoding

In this section we delve into the inner workings of LDPC decoding. We start with the
definition of an LDPC code and move on to its representation as a factor graph using the
SPA. From there we derive the full LDPC decoding algorithm using the SPA as a starting
point. We end off by showing how various approximations, message structuring and message
schedules can be used to simplify the decoding process.
An LDPC code C is entirely defined by its binary parity matrix H. Such a matrix has
dimensions (m×n) i.e. it has m rows and n columns. Each row represents a parity equation
and each column a codeword bit. The LDPC code C therefore has a codeword length of n
and contains m parity equations. A parity equation ensures that either an odd (odd parity)
or even (even parity) number of ones is present in the codeword bits that are participating
in the equation. The parity chosen is irrelevant so long as one is consistent throughout. A
codeword bit j participates in parity equation i if

Hi,j = 1

A codeword is only valid if it satisfies every parity equation in the parity matrix i.e. for
even parity a codeword x is valid if it satisfies

H · xT = 0 (2.4.1)

where the dot-product is binary i.e. using modulo 2. A code C is therefore made up of all
codewords that satisfy (2.4.1).
These parity equations equate to the characteristic function for C which allows the calcula-
tion of the APP (if the channel model is memoryless) as

G(x) = 1
|C|

∏
j

fσj (xj)
∏
i

Hi(xi)

where {H1(x1), ...,Hm(xm)} are the m parity equations of H and xi the subset of bit vari-
ables participating in parity equation Hi. This leads to factor graphs as seen in figure 2.10a,
commonly referred to as Tanner graphs after Tanner [24] first proposed their use in LDPC
codes. In Tanner graphs the only variables nodes are nodes representing the codeword bits,
vx = {vx1 ,, vxn}. Function nodes fall into exactly two types: conditional probability
function nodes fσ = {fσ1 , ..., fσn} (whose messages are constant during a decoding) and
parity-check function nodes fH = {fH1 , ..., fHm}.
In the APP example of section 2.3.1, all variable nodes were of degree two. This allowed an
incoming message on one edge to simply be sent out the other edge with no computation
required. For variable nodes of a higher degree this is no longer possible and one needs
to follow (2.3.3) to compute messages. For binary decoding this implies calculating the
probability that a variable node is a zero or a one. A variable node vz could compute the
probability messages to function node fj as

Q0
vz-fj =

∼j∏
i

Q0
fi-vz

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 16

fy1

vx1

fy2

vx2

fy3

vx3

fy4

vx4

fy5

vx5

fy6

vx6

fy7

vx7

fy8

vx8

⊕H1 ⊕H2 ⊕H3 ⊕H4

(a)


0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0


(b)

Figure 2.10 – A Tanner graph and its parity matrix.

and

Q1
vz-fj =

∼j∏
i

Q1
fi-vz

Unfortunately, this allows for cases where Q0
vz-fj+Q

1
vz-fj 6= 1, which would result in messages

not being uniform. This is corrected by adding a normalising factor to ensure all messages
have a probability magnitude of one i.e.

Q0
vz-fj =

∼j∏
i

Q0
fi-vz

∼j∏
i

Q0
fi-vz +

∼j∏
i

Q1
fi-vz

(2.4.2)

and

Q1
vz-fj =

∼j∏
i

Q1
fi-vz

∼j∏
i

Q0
fi-vz +

∼j∏
i

Q1
fi-vz

(2.4.3)

A parity-check function node was also dealt with in the APP example. It had a degree of
three. The calculation of messages from a parity-check function node fj of arbitrary degree
to a variable node vz can be generalised as

Q0
fj-vz = 1

2 + 1
2

∼z∏
i

(
1− 2Q1

vi-fj

)
(2.4.4)

and

Q1
fj-vz = 1

2 + 1
2

∼z∏
i

(
1− 2Q0

vi-fj

)
(2.4.5)

These equations already result in normalised messages and stem from Gallager’s original
paper [22] on LDPC codes. He derived them using [22, Lemma 4.1] whereby the probability

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 17

that a sequence of bits x contains an even number of symbol S ∈ {0, 1} is equal to

1
2 + 1

2
∏
i

(1− 2 Pr(xi = S))

In practice, a message format such as a 2-tuple requires calculating two separate messages –
one for each probability (even if only one is sent; the one requires the other for normalisation),
which is inefficient.

2.4.1 LDPC Codes Message Formats
The necessity of sending two separate numbers per message can be avoided by using a
likelihood ratio, defined as

QLR
a-b = Q0

a-b
Q1
a-b

(2.4.6)

This allows the computation and sending of both message pieces as one number. Substituting
(2.4.2) and (2.4.3) into (2.4.6), gives the following calculation for the messages from variable
node z to function node j

QLR
vz-fj =

Q0
vz-fj

Q1
vz-fj

=

∼j∏
i

Q0
fi-vz

����������∼j∏
i

Q0
fi-vz +

∼j∏
i

Q1
fi-vz

·����������∼j∏
i

Q0
fi-vz +

∼j∏
i

Q1
fi-vz

∼j∏
i

Q1
fi-vz

=

∼j∏
i

Q0
fi-vz

∼j∏
i

Q1
fi-vz

=
∼j∏
i

QLR
fi-vz

(2.4.7)

where one can see that the normalisation factor cancels out. The message probability pieces
Q0
a-b and Q1

a-b can be written in terms of the likelihood message QLR
a-b by using (2.4.6) and

the fact that Q0
a-b +Q1

a-b = 1. This results in

Q0
a-b = QLR

a-b
QLR
a-b + 1 (2.4.8)

and
Q1
a-b = 1

QLR
a-b + 1 (2.4.9)

Substituting the parity-check message computation equations (2.4.4) and (2.4.5) into (2.4.6)
gives

QLR
fj-vz =

1 +
∼z∏
i

(
1− 2Q1

vi-fj

)
1 +

∼z∏
i

(
1− 2Q0

vi-fj

)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 18

where Q0
vi-fj and Q1

vi-fj can be replaced using (2.4.8) and (2.4.9). This gives

QLR
fj-vz =

1 +
∼z∏
i

(
1− 2

QLR
vi-fj

+1

)
1 +

∼z∏
i

(
1−

2QLR
vi-fj

QLR
vi-fj

+1

)

=
1 +

∼z∏
i

QLR
vi-fj

−1

QLR
i-j +1

1−
∼z∏
i

QLR
vi-fj

−1

QLR
vi-fj

+1

(2.4.10)

The likelihood ratio suffers from an underflow problem when represented using a limited
resolution, as probabilities can reach very small numbers. This problem is fixed by using
the log-likelihood ratio (LLR) to convey messages from node a to b as

QLLR
a-b = ln Q

0
a-b

Q1
a-b

= lnQLR
a-b (2.4.11)

This message format has further advantages, one of which is the ability to determine the
most likely symbol of the bit by looking at the sign of the LLR. Another bonus is the
computationally friendly variable node message calculation. For some variable node vz to
function node fj the message calculation becomes

QLLR
vz-fj = ln

(∼j∏
i

QLR
fi-vz

)

=
∼j∑
i

log
(
QLR
fi-vz

)
=
∼j∑
i

QLLR
fi-vz

(2.4.12)

where multiplication has now become summation in the log domain. This is of great benefit
in real world applications as summation is much cheaper to do computationally. In a similar
fashion, the bit node marginal probability can be calculated as

QLLR
vz-f=

∑
i

QLLR
fi-vz (2.4.13)

On the parity-check node message calculation side, things become more complex. Rearran-
ging (2.4.11) gives

QLR
a-b = eQ

LLR
a-b

Substituting this into (2.4.10) gives the following equation for a message from fj to vz

QLLR
fj-vz = ln

1 +
∼z∏
i

e
QLLR
vi-fj−1

e
QLLR
vi-fj +1

1−
∼z∏
i

e
QLLR
vi-fj−1

e
QLLR
vi-fj +1

This can be simplified using the definitions

tanh
(
ζ

2

)
= eζ − 1

eζ + 1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 19

2 tanh−1(ζ) = ln 1 + ζ

1− ζ
to get

QLLR
fj-vz = ln

1 +
∼z∏
i

tanh
(
QLLR
vi-fj
2

)
1−

∼z∏
i

tanh
(
QLLR
vi-fj
2

)
= 2 tanh−1

(∼z∏
i

tanh
(
QLLR
vi-fj
2

)) (2.4.14)

Both tanh and tanh−1 are transcendental functions, requiring lookup tables when implemen-
ted in hardware, and cause significant computational delays in software implementations.
This has led to a range of approximation alternatives being developed.

2.4.2 Parity-Check Message Approximations
The simplest of the approximations is called the min-sum algorithm and suffers a 2 dB
performance loss when compared to the full sum-product decoding [1]. The min-sum message
computation is defined as

QLLR
fj-vz =

∼z∏
i

sgn(QLLR
vi-fj) ·

∼z
min
i
|QLLR

vi-fj | (2.4.15)

which is equal to the min-sum algorithm used in the Viterbi algorithm [3]. This can be
derived by splitting (2.4.14) into smaller recursive pieces (we show this is possible in (2.3.7))
until the smallest piece requires only two messages, Ψ and Ω:

2 tanh−1
(

tanh
(

Ψ
2

)
tanh

(
Ω
2

))
= ln

1 + tanh
(Ψ

2
)

tanh
(Ω

2
)

1− tanh
(Ψ

2
)

tanh
(Ω

2
)

= ln
cosh

(Ψ
2
)

cosh
(Ω

2
)

+ sinh
(Ψ

2
)

sinh
(Ω

2
)

cosh
(Ψ

2
)

cosh
(Ω

2
)
− sinh

(Ψ
2
)

sinh
(Ω

2
)

Applying the identities

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)
cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y)

gives

ln
cosh

(Ψ+Ω
2
)

cosh
(Ψ−Ω

2
)

= ln
(
eΨ+Ω + e−Ψ−Ω)− ln

(
eΨ−Ω + e−Ψ+Ω)

For |x| � 1
ex + e−x ≈ e|x|

which results in the approximation

ln
cosh

(Ψ+Ω
2
)

cosh
(Ψ−Ω

2
) ≈ ln

(
e|Ψ+Ω|

)
− ln

(
e|Ψ−Ω|

)
= |Ψ + Ω| − |Ψ− Ω|
= sgn Ψ sgn Ω · min(|Ψ|, |Ω|)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 20

Finally, by noting that

sgn Φ · sgn (sgn Ψ · sgn Ω) = sgn Φ · sgn Ψ · sgn Ω
min(|Φ|,min(|Ψ|, |Ω|)) = min(|Φ|, |Ψ|, |Ω|)

allows the approximation of (2.4.14) as the min-sum computation by using the recursive
nature shown in (2.3.7). The transcendental tanh function and its inverse have now been
approximated using only the product of the signum and minimum functions, of which the
former reduces to the XOR of the signum function.
A few enhancements to the min-sum algorithm exist. The performance loss of the min-sum
algorithm can be largely negated by using a correction factor. The normalised min-sum
algorithm does this by multiplying the min-sum result by a positive number smaller than
one [1]. The offset min-sum algorithm replaces each incoming message magnitude |Ψ| at
a parity-check node by max(|Ψ| − β, 0) [1]. This effectively removes the influence of all
messages whose magnitude is less than β. A review of the performance trade-offs is done in
[28]. The two min-sum algorithm adaptions can also be combined. In their simplest form,
both algorithms’ correction factor is a constant, although ideally it would vary with both
iteration and node. A few adaptive algorithms that do this have been proposed, an example
of which is discussed in [29].

2.4.3 LDPC Message Passing Algorithms
A message passing schedule is often used to add some order to the message passing. General
schedule types include:

Flooding Every node sends a message along every edge at the same time.

Serial Nodes send messages along edges one at a time.

Clumping A combination of flooding and serial. Nodes are grouped together, each group
then takes turns to pass messages using the flood schedule.

Flooding and serial are trivial types and are not discussed further. LDPC codes have a few
ways in which to take advantage of a clumping type schedule.
The standard LDPC message passing algorithm is called two phase message passing [1].
It splits the nodes into two clumps according to their type, namely variable nodes and
function nodes. In one phase variable nodes receive messages and calculate their messages
to the function nodes. This is known as the variable node update phase. In the other phase,
function nodes receive messages and calculate their messages to the variable nodes. This is
known as the check update phase, as the channel conditional function nodes don’t require
receiving messages or any calculation (their messages are a constant).
An extension of the two phase message passing is the layered decoding algorithm [1]. Mes-
sages are still passed during variable update and the check update phases. The parity-check
function nodes are separated into groups called layers such that every variable node has at
most one connection to each layer. During the check update phase only one layer updates
its messages, the rest of the groups still pass the old messages. Variable nodes therefore
receive at most one new message from parity-check nodes per variable update phase. This
allows for simplification of the variable update phase’s message calculation. It can also be
used to unify the variable and check update phases as described in [1].

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 21

2.5 General LDPC Encoding

LDPC codes need long codewords to reach good error correcting performance [23]. This
makes encoding complexity with respect to code length an important factor. Unfortunately
the encoding of an LDPC code is, in general, quadratic with code length. This can be
demonstrated by splitting a codeword x and the parity-check matrix H into two parts such
that

H · xT = 0T

becomes
[Hi|Hp] ·

[xTi
xTp

]
= 0T (2.5.1)

where xi and xp are vectors containing the information bits and parity bits respectively. As
the information bits are already known, all that is required is to calculate the values for the
parity bits. This can be done by rearranging (2.5.1) to get

xp = H−1
p · Hi · xi

Both parts of the parity matrix, Hp and Hi, are sparse because H is sparse. This means
that the dot product Hi · xi has linear complexity as the sparseness of Hi can be exploited.
Although Hp is sparse, this does not mean H−1

p is, which results in quadratic complexity
overall.
This encoding complexity has a few solutions, some of which are now examined.

2.5.1 Lookup Table
All encoding can be relegated to performing a simple lookup in a table storing all possible
information to codeword combinations. Due to the large code length requirements of LDPC
codes, this implementation requires large volumes of memory. It is hardly ever used in
practice but should be kept in mind as the cost of memory falls.

2.5.2 Triangular Parity-Check Matrix
If the parity-check matrix can be transformed into a triangular matrix using only row and
column operations then it is linearly encodable [3]. For an (m×n) upper-triangular parity-
check matrix, set the first n−m bits as information bits. This allows the calculation of the
m parity bits in order by using the parity equations from top to bottom as each equation
relies only on information bits and calculated parity bits.
This encoding method can also be expressed using a binary erasure channel decoder as
described in [3]. After setting the n information bits and the parity bits as erased bits, the
decoder will find the codeword in m iterations. This allows encoder and decoder to share
chip real estate which is useful for transceiver and half-duplex systems [3].




01

1

1
1

1
1

1
1

Figure 2.11 – Parity matrix in upper-triangular form.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 22

2.5.3 Approximate Triangular Parity-Check Matrix
Richardson et al. [4] proposed transforming a parity-check matrix as close to a triangular
matrix as possible. If a parity matrix can be transformed such that only m′ rows do not fall
into the triangular matrix form thenm−m′ parity bits can be calculated using the triangular
matrix approach and the other m′ parity bit values need to be calculated by solving the
remainingm′ parity-check equations. This last part has exponential complexity with respect
to m′. Richardson et al. [4] show that for randomly constructed LDPC matrices, m′ � m
which allows encoding complexity to be linear with respect to overall code length in most
cases. 



01

1

m−m′

1
1

1
1

1
1

Figure 2.12 – Parity matrix in approximate upper-triangular form.

2.5.4 Block-Triangular parity-check Matrix
This method was recently (2011) proposed as a solution to linearly encode arbitrary p-ary
LDPC codes [35]. Although this method is capable of encoding non-binary LDPC codes as
well, the focus here is on the binary encoding case only.
The authors of [35] extend the approximate triangular parity-check matrix approach of
section 2.5.3 proposed by Richardson et al. [4]. They show that the required parity-check
matrix structure can be formed from any parity-check matrix of a linear block code. The
authors further show that if the original parity-check matrix is sparse, then the encoding is
linear with respect to code length. This means this method can be used to encode arbitrary
LDPC codes.
The original parity-check matrix H is split up into information and parity parts so that

Hp · xTp = Hi · xTi = bT

The value of b can be linearly calculated from Hi · xTi so long as Hi is sparse. Hp is now
transformed into block-triangular matrix A which [35] defines as

A =


A0,0 · · · · · · A0,n−m

0 A1,1 · · ·
...

...
.

...
0 · · · 0 Am,n−m



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 23

where Ai,j is sub-matrix i,j of A and 0 is a zero matrix. Furthermore, the diagonal sub-
matrices Ai,i need to have approximate lower triangular structure

Ai,i =


B C

∗
∗

0
. . . D

∗


where ∗ represents any non-zero value. x′p may now be determined from A and b′, where
x′p and b′ are permutations of their respective namesakes in order to match the column
permutations in the transformation of Hp → A. This encoding process is directly propor-
tional to the number of non-zeroes in the original parity matrix [35]. If the original parity
matrix is sparse as in LDPC codes, then the number of non-zeroes is directly proportional
to the block length and therefore encoding is linear.

2.5.5 Generic Graph Based Algorithm
Lu et al. [36] suggests a graph based approach that is similar to that used in the block-
triangular parity-check matrix method described in section 2.5.4. To be more exact, the
methods are identical for parity-check matrices in which the maximum column weight is
less than or equal to three [35] and diverge for higher weights. This graphical approach also
only works for binary LDPC codes.
Lu et al. [36] use a structured version of a Tanner graph which they call a pseudo-tree [36]. A
pseudo-tree has only variable nodes and parity-check nodes. The variable nodes are further
subdivided into information bit nodes and parity bit nodes. The nodes are arranged into
alternating tiers containing only variable nodes or only parity-check nodes. The structure
is further constrained by forcing every parity-check node to have exactly one edge to a
higher tier variable node, namely its parent parity bit node. Any node that is not the
parent of a parity-check node becomes an information bit node. This structure guarantees
linear encoding. Once the information nodes have had their values set, the lowest tier of
parity-check nodes can calculate the value of their parity bit nodes. This in turn allows the
following tier of parity-check nodes to calculate theirs and so on until the top of the tree
is reached. This is the graphical equivalent to the triangular parity-check matrix method
described in section 2.5.2. An example of a pseudo-tree is shown in figure 2.13b.
Not all parity-check matrices can be structured as a pseudo-tree. This should be apparent
from the fact that not all parity-check matrices can be transformed into a triangular matrix
using only row and column operations. Lu et al. [36] circumvent this by extending pseudo-
trees into stopping sets. A k-fold stopping set is a pseudo-tree plus k extra parity-check
nodes, called key check nodes, that cannot fit into the pseudo-tree structure. A possible
reason for not fitting into the structure might be that all connected bit nodes are either in
lower tiers or already are parity bit nodes of other parity-check nodes thus not letting the
extra parity-check node find a suitable parent parity bit node. These key check nodes each
need a unique bit node to become their parity bit node. Lu et al. [36] describe an algorithm
for finding these k parity bit nodes {β1, ..., βk} from the bit nodes in the pseudo-tree. An
example of an encoding stopping set is shown in figure 2.14b.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 24



1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1


(a) Parity-check matrix.

vx14 vx15 vx16

fH7

vx10 vx11 vx12 vx13

fH5 fH6

vx5 vx6 vx7 vx8 vx9

fH1 fH2 fH3 fH4

vx1 vx2 vx3 vx4Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6

Tier 7

LEGEND
Information Bit Node

Parity Bit Node
Parity Node

(b) Pseudo-tree.

Figure 2.13 – A parity-check matrix and its pseudo-tree.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 25



1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1


(a) Parity-check matrix.

vx14 vx15 vx16

fH7

vx10 vx11 vx12 vx13

fH5 fH6

vx5 vx6 vx7 vx8 vx9

fH1 fH2 fH3 fH4

vx1 vx2 vx3 vx4

fH8 fH9

Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6

Tier 7

LEGEND
Information bit node

Parity bit node
Parity-check node

Key parity-check node

(b) Stopping set graph.

Figure 2.14 – A stopping set graph and its parity matrix.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 26

Encoding starts by encoding the pseudo-tree sub-graph, where {β1, ..., βk} are set to arbit-
rary values and the key check nodes are ignored. After the pseudo-tree has been encoded,
some combination of the key check nodes {α1, ..., αi}; i ≤ k might be unsatisfied. This
prompts a flip of the associated parity bit nodes {β1, ..., βi} which in turn causes certain
parity-check nodes in the pseudo-tree to become unsatisfied. This then necessitates the
flipping of some parity bit nodes in the pseudo-tree. Lu et al. [36] provide an algorithm
to determine which parity bits will be affected by which combination of incorrect key check
nodes. This allows for the bulk of the work to be done during preprocessing. Unfortunately
this means every parity bit node in the pseudo-tree needs to be aware of whether or not it
needs to be flipped for 2k possible combinations of incorrect key check nodes, which swiftly
becomes untenable with the required large code length. Lu et al. [36] solve this by proving
that it is possible to restrict k ≤ 2 by ensuring the maximum bit node degree is three and
that the latter is always possible by transforming all bit nodes of degree more than three as
shown in figure 2.15.

fH1 fH2 fH3 fH4 fH5

vx1

(a) Bit node of degree 5.

fH1

fH2

vx1 fH6
vx1

fH3

fH7
vx1

fH4

fH5

(b) Equivalent graph with maximum bit node degree 3. The extra parity-check nodes ensure that
the all bit nodes will have the same value.

Figure 2.15 – Transformation of a bit node of degree 5 into an equivalent graph with maximum
bit node degree 3.

2.6 Quasi-cyclic LDPC codes

QC-LDPC codes is a term used to describe a subset of LDPC codes with a specific struc-
ture. They are important because of their implementation by many emerging standards,
particularly in the wireless communications area [1].
A QC-LDPC code’s parity-check matrix H can be split into (mb × nb) equally sized square
submatrices or blocks Hij . Each block is either a cyclic shift of the identity matrix or a zero
matrix. Subsequently, their parity-check matrices can be fully described by a block size B
and a permutation matrix Π whose elements represent the cyclic shifts or the nil matrix.
The nil matrix is usually indicated by a −1 or −. The shift direction chosen is arbitrary so
long as one is consistent. An example is shown in figure 2.16b.
The permutation matrix greatly simplifies the interconnection structure between variable
nodes and function nodes in hardware implementations [1]. Instead of remembering or

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 27

0 1 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0 0





x1 x2 x3 x4 x5 x6 x7 x8 x9

H1

H2

H3

H4

H5

H6

(a) QC-LDPC parity matrix.

Π =
[

1 0 −
2 − 1

]
B = 3

(b) Permutation representation of a.

vx1 vx2 vx3 vx4 vx5 vx6 vx7 vx8 vx9

fH1 fH2 fH3 fH4 fH5 fH6

Layer 1 Layer 2

(c) Tanner graph highlighting layer 1’s connections.

vx1 vx2 vx3 vx4 vx5 vx6 vx7 vx8 vx9

fH1 fH2 fH3 fH4 fH5 fH6

Layer 1 Layer 2

(d) Tanner graph highlighting layer 2’s connections.

Figure 2.16 – QC-LDPC code example and its layered decoding Tanner graph.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 28

hard-wiring every connection, one can simply rotate each block of incoming messages as
determined by the appropriate cyclic shift.
QC-LDPC codes also lend themselves easily to the layered decoding message passing al-
gorithm discussed in section 2.4.3. Each block row of the parity-check matrix naturally
represents one layer already. This can easily be seen in the Tanner graphs in figures 2.16c
and 2.16d.

2.7 LDPC Code Detection

This section covers the selection of the most likely LDPC code from a set of such codes
based on the method proposed by Xia et al. in [6].
Xia et al. propose that the likelihood of a code being responsible for the received codeword y
is equivalent to the average likelihood of the syndrome APP. That is, the likelihood is equal
to the average of the parity-check equation’s likelihood of being satisfied. The log-likelihood
Γθ of some code Cθ is then

Γθ = 1
Bθ

∑
i

Φθi (2.7.1)

where mθ is the number of parity-check equations and Φθi is the log-likelihood of syndrome
i i.e. log-likelihood of parity-check equation i being correct. Xia et al. prove that Φθi can
be written as

Φθi = 2 tanh−1

∏
j

tanh
(
L(xj |yj)

2

) (2.7.2)

where L(xj |yj) represents the log-likelihood of bit xj being zero based on the conditional
channel probability. j iterates over every bit index that is involved in equation parity-check
equation i. (2.7.2) should be reminiscent of (2.4.14) which is the message calculation for
messages from a parity-check node to a variable node. This similarity will be leveraged in
the design of the detection and decoding system.
If a code Cθ is the correct code, then (2.7.2) is expected to yield a positive log-likelihood for
each parity equation in Cθ[6]. This leads to an overall high expected value for Γθ. If Cθ is
not the correct code, then the result of (2.7.2) is random [6], leading to an overall expected
log-likelihood of zero for Γθ.
The most likely code of a set can be selected by evaluating (2.7.1) for each code and then
selecting the code with the largest average syndrome APP. Codes with different codeword
lengths can be compared by either cutting off the extra bits (if the received sequence is too
long) or by padding with zero bits as required.
The following chapter discusses the requirements and general design of the hardware and
software components.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

System Design

In this chapter we broadly outline the design of the system and its subsystems. We go over
the aims of the thesis and distil these into system and subsystem requirements. The general
concept behind the hardware decoder functionality is analysed. We then discuss the various
subsystems and show how these come together to achieve the aims of this thesis.
As mentioned before, the main goal of this thesis is to produce a tool that can generate
hardware code for a flexible QC-LDPC decoder. Here, flexible implies that the decoder
should be capable of supporting multiple different codes. No restrictions are placed on these
codes, except that they need to be QC-LDPC codes. Secondary goals include automating
the decoder and providing a software tool that can simulate the applicable performance
aspects of the hardware decoder.
The overall system has two outputs:

1. hardware code files for the decoder,

2. simulation results.

A black box model of the overall system is shown in figure 3.1.
We split the overall system into three distinct subsystems, namely configuration parsing,
code generation and simulation. The configuration parsing subsystem is somewhat trivial.
As the name suggests it simply parses the user’s configuration settings and splits these
into those relevant to the code generation and simulation subsystems. The configuration
parsing subsystem therefore acts as a front end that allows the configuration to remain
compact while still keeping the code generation and simulation subsystems distinct from
one another. This is visually represented in figure 3.2.

INPUT
configuration

SYSTEM
OUTPUT

simulation results

OUTPUT
hardware files

Figure 3.1 – Black box system overview.

29

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM DESIGN 30

INPUT
configuration: xyz

SUBSYSTEM
configuration parsing

SUBSYSTEM
simulation

SUBSYSTEM
code generation

SYSTEM

OUTPUT
simulation results

OUTPUT
hardware files

xyz

yz

xz

Figure 3.2 – Configuration parsing: x represents settings applicable to code generation only,
y to simulation only and z common to both subsystems.

3.1 Decoder Concept

We limit the scope of our decoder by assuming that we have the channel conditional prob-
abilities messages available as input. This means the user is required to deal with converting
the received signal into likelihood messages. Computing these likelihoods requires knowledge
of the modulation scheme used as well as an accurate model of the channel.
In the case that no prior knowledge of the channel is available, [9] offers a means to estim-
ate the SNR of an additive white Gaussian noise (AWGN) channel when coupled with a
BPSK modulation scheme. This in turn allows the user to calculate the necessary channel
conditional likelihoods.
The decoder’s job is to decode the likelihood messages into codeword bits according to the
LDPC decoding algorithm. This is shown in figure 3.3.
In order to do this, the decoder needs to know which code of the code set is currently
encoding the data. This is known as the active code. We use the average syndrome APP,
as proposed in [6] and discussed in section 2.7, to select the most likely active code. It is
unlikely that the active code will change very often and it is therefore inefficient to perform
a full detection algorithm for every codeword received. Instead, the average syndrome APP
is calculated only for the code currently selected by the decoder. If this APP drops below a
user-defined threshold, then a full detection algorithm is performed to select the most likely
active code.
The decoder can be viewed as a state machine with three major states:

1. idling,

2. decoding,

3. detecting.

The decoder is idling whenever it is not busy decoding or detecting. A flag is provided to
indicate whether or not the decoder is busy. The user therefore knows when it is safe to push
new input to the decoder. The decoder moves to the decoding state whenever it receives

INPUT
channel probabilities

DECODER
OUTPUT
codeword bits

Figure 3.3 – Decoding process.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM DESIGN 31

a new input. This means the decoder can be interrupted and forced to start decoding the
new input even if it was not finished with the previous decoding.
The decoder exits the decoding state and returns to the idling state by successfully complet-
ing the decoding. If, during decoding, the average syndrome APP falls below the threshold,
the decoder enters the detection state.
Once the decoder is in the detection state, it can only transition to the decoding state. This
occurs either when the detection algorithm is completed, or when the decoder is forced to
start decoding new input. These states and state transitions outline the full functionality
of the decoder. The state diagram is shown in figure 3.4.

start idling new
input?

decodingdone?

done?
or

new input?
detection

threshold
failed?

yes

no

yes

no

no

yes

no

yes

Figure 3.4 – Decoder state machine

3.2 Simulation Subsystem

This subsystem needs to accurately describe and replicate the performance of the hardware
decoder using software. It achieves this by providing a software model of the decoder which
follows the same decoding and code detection state rules as the hardware decoder. In order
to simulate the decoder’s performance, input channel conditional likelihoods need to be
provided for the software decoder model to operate on. These likelihoods are generated
by simulating the entire communications process up to the start of the decoding process.
Generating a single codeword’s channel conditional likelihoods for some code C requires the
following steps.

1. Create a random information bit string of appropriate length for C.

2. Encode this bit string into a valid codeword for C.

3. Modulate the codeword.

4. Simulate transmitting the modulated codeword across a noisy channel.

5. Simulate receiving and demodulating the noisy signal into channel conditional likeli-
hoods.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM DESIGN 32

start
form

information
bits

encode modulate

transmitdecodesimulation
resultend

011 01101

01101

Figure 3.5 – Simulated communications process.

Steps 1 and 2 are achieved by building a software encoder for C. Steps 3, 4 and 5 require
that a modulation scheme and channel model be specified. The entire decoder simulation
process therefore requires the following to be successful:

• a decoder model for every code in codeset,

• an encoder model for every code in codeset,

• a modulation model or scheme,

• a channel model.

The decoder and encoder models can be created using the code definitions which are sup-
plied by the user. An encoder model can use any of the encoding methods described in
section 2.5. The modulation scheme and channel type will vary depending on the situation
being simulated. The models for these are therefore kept abstract, allowing new modulation
schemes and channel types to be added in as necessary. The simulation subsystem allows
the user to select modulation schemes and channel type from among those implemented.
This forms part of the configuration settings.
Specific simulations that are possible include: average bit error rate versus SNR, average
code identification rate, individual code identification rate and average iterations needed for
decoding.

3.3 Code Generation Subsystem

This subsystem is responsible for generating files containing the necessary code for the
hardware decoder. The decoder’s design pattern is chosen to make this process as easy
as possible without sacrificing decoder performance or future extensions. The basic idea
is that the decoder’s structure is modularised into many highly independent, static parts.
These can be easily generated by the subsystem as they are constant. A single dynamically-
generated part is used to allow for flexibility in the setup of the decoder. This part is used to
control user-defined aspects such as maximum iterations or message bit length as is shown
in figure 3.6. The modularisation has a further benefit in that it allows for easy extensibility
- parts can be switched out for new or different designs with ease. Each part is written to
its own separate file with a logical name to allow for easy readability.
All together, the subsystems, in conjunction with the decoder design, allow us to generate
code for a hardware decoder and simulate its performance for various channel and modu-
lation combinations. The decoder is automated by using the average syndrome APPs to
decide which code to use in decoding. Our overall system therefore meets all of our aims.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. SYSTEM DESIGN 33

yz

SUBSYSTEM
configuration parsing

static parts

dynamic part

OUTPUT
hardware files

SUBSYSTEM
code generation

yz
yz

Figure 3.6 – Code generation subsystem.

The full design for both the hardware and software components if elaborated on in the next
chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Hardware Design

In this chapter the design process and choices behind the hardware design for the decoder
system is discussed. The main goal of this design is to be a proof-of-concept hardware
implementation. As such, the design prioritises simplicity over speed and efficiency. This is
the decoder that will be generated by the code generation subsystem and therefore needs to
be designed beforehand. We initially discuss some general choices and how they impact our
design. We then discuss the decoder modules in detail and show how these form the final
decoder design.
The hardware decoder is designed in the VHSIC Hardware Description Language (VHDL).
Other target hardware description languages could be implemented to extend the tool. This
is left for future work.

4.1 Clock Synchronisation

A hardware design can be asynchronous or synchronous. Both are possible for LDPC de-
coders. Asynchronous can provide better performance [1] but was deemed unnecessarily
complex for this proof-of-concept. The design is split into modules which execute sequen-
tially. Synchronisation between modules is maintained through the use of a common clock.
Each module performs its task in a single clock cycle. This allows information to flow from
module to module with minimal downtime.

4.2 Message Format

As discussed in section 2.4.1, we have three possible message formats to choose from:

• 2-tuple messages,

• likelihood ratio messages,

• log-likelihood ratio messages.

The dual and likelihood ratio message formats are discarded as they require many multiplic-
ations which are expensive to calculate in hardware. We therefore chose the log-likelihood
ratio format, which involves only summation and the transcendental functions tanh and
tanh−1.

34

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 35

4.3 Transcendental Functions

It is possible to implement transcendental functions in hardware, but the cost of doing
so is usually prohibitive [3]. The transcendental functions of interest to us are the tanh
function and its inverse, which are used in the detection and parity update equations (2.7.2)
and (2.4.14).
These functions can be implemented approximately using lookup tables. This is cheap com-
putationally but quickly becomes expensive in terms of memory, board area and extra wiring
in order to achieve higher resolutions and accuracy. Alternatively, they can be approximated
using the Taylor series expansion which can save on board area but is slower. Both of these
approximations are usually avoided in favour of the min-sum approximation as discussed in
section 2.4.2. We use the min-sum approximation in our implementation – the more effective
min-sum adaptions could also have been implemented, but this was deemed unnecessary for
a proof-of-concept.

4.4 Fixed Point versus Floating Point

Performing arithmetic on floating point numbers is more expensive than for fixed point
numbers [10]. Fixed point numbers have a smaller range, however research has shown that
good performance can still be attained by fixed point implementations [1]. We therefore use
fixed point numbers in our design.

4.5 Sign Magnitude versus Two’s Complement Format

Upon examining the min-sum approximation equation (2.4.15) we note that the sign and
the magnitude are needed separately. This leads us to examine the use of sign magnitude
numbers in place of the more common fixed point two’s complement representation.
It was found that the computational gains of the sign magnitude representation at the parity
update equation were mostly nullified at the bit update equation as the two’s complement
representation is easier to add. We decided on the two’s complement format as it is directly
supported by the VHDL package ‘numeric_std’.
We let the user determine the bit length of a message as part of the options available during
code generation.

4.6 Message Passing Schedule

Most of the complexity of an LDPC decoder in hardware stems from the module connecting
the bit nodes to the parity nodes [11]. In our implementation this module is called the
interconnection network. The size and complexity of this network depends entirely on the
parity check matrix of the code, as well as the message passing schedule (discussed in
section 2.4.3) being used.
At the one extreme, we have the flooding schedule in which every edge in the factor graph
is represented by a wired connection, which results in the fastest and most accurate results,
but consumes a large portion of hardware real estate. It is further completely inflexible
(connections are hard wired) and as such does not afford any benefits to our flexible decoder.
At the opposite end, we have the serial schedule where a single message is passed at a time.
This would be extremely slow, and not suitable for most applications. The only real option
is to use the clumping schedule, where the layered decoding algorithm’s schedule stands out
for QC-LDPC codes in particular.
In layered decoding, parity nodes are grouped together such that each bit node has at most
one connection to each parity node group. QC-LDPC codes are already naturally grouped

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 36

up this way which means no pre-computation is required. Each bit node has at most one
connection to the parity nodes in a block row as the edges are represented by either a shifted
identity matrix or a zero matrix. QC-LDPC codes lend themselves so readily to the layered
message passing schedule, therefore it is the one we adopted.

4.7 Decoder Design

In this section we go over the detailed design of a decoder such as the one discussed in
section 3.1. We briefly outline the decoder modules and their purpose. We then delve into
the inner workings of the individual modules and how they interlink. The decoder makes
use of all the design choices we have made thus far:

• synchronous clock,

• log-likelihood ratio message format,

• min-sum approximation at the parity nodes,

• fixed point sign-magnitude number representation,

• layered message passing schedule.

Our LDPC decoder has the following modules:

bit module
The bit module is the hardware equivalent of the bit variable nodes. It is responsible
for computing the current bit node values as well as the messages to the parity-check
nodes.

parity-check module
Similar to the bit module, the parity-check module is equivalent to the parity-check
function nodes. It is responsible for calculating the messages for the bit node messages
as well as the parity-check APP syndromes used for code detection.

interconnection network module
The interconnection module connects the bit module to the parity-check module and
ensures that messages get to the correct node.

detection module
The detection module uses the parity-check APP syndromes to determine which code
is the most likely when the decoder is in detection mode. If the decoder is in decod-
ing mode, the detection module uses the parity-check APP syndromes to determine
whether or not to enter detection mode, as discussed in section 3.1.

read-only memory module
The read-only memory (ROM) module stores the permutation matrices of the codes,
which are used by the interconnection network.

random-access memory module
The random-access memory (RAM) module has three components. Component I
stores the channel conditional messages, component II the current bit node values and
component III the most recent messages from the parity-check nodes to the bit nodes.

control module
This module controls the state of the decoder. It connects the different modules
together and determines when a decoding starts and ends.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 37

Input Output

Ram I

Bit
Module

Interconnection
Network

Parity-check
Module

Rom

Ram IIRam III

Detection
Module

/
Bmax

/
Bmax

/
Bmax

/
Bmax

/
Bmax

/
Bmax

/
Nmax

/1

/
Bmax

/
Bmax

/
Bmax

/
Bmax

/
Bmax

Figure 4.1 – Decoder module connections.

The main connections between the different modules are shown in figure 4.1.
The various decoder modules are now discussed, starting with the interconnection module,
as it consumes the largest board area and its design will shape the rest of the modules.

4.7.1 Interconnection Network
The interconnection network is responsible for routing the messages in between the bit and
parity check modules according to the permutation values supplied by the ROM module.
As we are only supporting QC-LDPC codes we can perform this routing cheaply by rotating
each block of messages as per the appropriate permutation. We choose that the rotations
should be to the right for messages from the bit module to the parity-check module, and to
the left for the returning messages.
For a single code decoder it suffices to implement a simple rotation unit capable of rotating
B bits any of the B possible permutations. This can be achieved in hardware using a barrel
rotator1 which rotates an input the desired amount in a single clock cycle. A barrel rotator
consists of s = dlog2Be stages. Each stage i ∈ 0 : s− 1 rotates the message block by 2i if it

1The term barrel shifter is commonly used when referring to both rotation and shift operations. We use
the term rotator to differentiate between the rotation and shift.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 38

Input
A B C D E F G

Stage 0 (� 1)

G A B C D E F

Stage 1 (� 2)

G A B C D E F

Stage 2 (� 4)

C D E F G A B

Output
C D E F G A B

Permutation
510 ≡ 1012

1

0

1

enabled

disabled

enabled

Figure 4.2 – Barrel rotation to the right.

is active. If it is inactive the message block is passed through as is. The control for stage i
is simply bit i of the rotation amount. An example is shown in figure 4.2.
Unfortunately, a barrel rotator does not suffice for our uses. The barrel rotator rotates
blocks of a fixed size. We need to support multiple different block sizes. One option is to
have a barrel rotator for every block size. This is not sustainable, especially for our purpose,
as we do not know how many different block sizes we might have.
We need a flexible rotation which has maximum block size Bmax, input x = {x0, ..., xBmax−1}
and output y = {y0, ..., yBmax−1}. It is capable of rotating the first 1 ≥ Bi ≤ Bmax inputs
for any valid rotation value 0 ≥ ΠiłBi. The flexible rotation therefore maps input to output
according to

yj =
{
x(j+Πi) mod Bi : j ≤ Bi
∗ : otherwise

where ∗ stands for don’t care. Two designs for flexible rotation units are proposed in [12]
and [11].
Oh et al. [12] propose using a modified Benes network to rotate the first B ≤ Bmax messages
of a block of size Bmax. A Benes network is a series of stages containing parallel 2-input,
2-output switches called crossbar switches [12]. Each switch is controlled to either cross or
bar state. In the cross state, the two inputs are switched. In the bar state, the outputs are
the inputs. This allows a Benes network to shuffle its input into any conceivable sequence,
so long as each input is mapped to an output [12]. Benes networks were commonly used
in telephone switchboards [12]. The Benes network is not very efficient with respect to
rotating a sub-block as it is designed to be able to output any sequence, even non-rotations.
An issue with using a typical Benes network to perform rotations is the large board area
that becomes consumed by storing the necessary control signals as the number of rotations
and possible block sizes increase. Oh et al. [12] note that one can break a Benes network
into two parallel half-sized Benes networks. They utilise this fact to calculate the necessary
control signals on the fly, which saves considerable board space.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 39

Xia et al. [11] describe a simple shift network they call QSN2. They note that a rotation
can be generated by combining the outputs of a left shift and a right shift of the input. This
works for rotating any sub-block as well. Tests comparing the improved Benes network and
the QSN were done in [11]. They show that QSN is a more efficient implementation for a
variable size rotation unit. QSN uses almost a factor 8 smaller board area and its critical
path is less than half of the improved Benes network [11]. The QSN is therefore chosen to
be used in our interconnection network. We now show how a QSN functions in more detail.
A QSN has three components. A left shift component, a right shift component and merge
component. The left and right shift components are simple barrel shifters which operate in
parallel. A barrel shifter is identical to the barrel rotator shown in figure 4.2 except that the
inputs do not wrap around as they are shifted. The new value that is shifted in is arbitrary
which may allow for some small optimisations. Each shifter takes the input and shifts it
either left or right. The merge component is then responsible for selecting from either the
left or right shifts output to give the correct rotation output. The full functioning of a QSN
is outlined in algorithm 1. A graphical example of a QSN is shown in figure 4.3.
The QSNs are used to rotate message blocks in between bit and parity check nodes. A
single QSN can rotate a single block at a time. If a set of codes has a maximum number of
block columns mb−max then we can rotate an entire layer’s worth of messages at a time by
using 2 ×mb

max QSN units in parallel. We need two QSNs per block, because we require
messages to and from every node. The second QSN performs the inverse permutation of the

2likely for quasi-cyclic shift network

Algorithm 1 QSN rotate right algorithm.
const Bmax . maximum block size
in B . current block size
in Π . rotation amount
in input . input block
var l, r . left, right shift amount
var lo, ro . left, right shift output
out output . output block

if Π == 0 then
output← input
return output

end if

l← B −Π . calculate left shift amount
r ← Π . calculate right shift amount

lo ← shift_left(input, l)
ro ← shift_right(input, r)

for i < Bmax do
if i < Π then

output[i]← lo[i]
else

output[i]← ro[i]
end if

end for

return output

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 40

Left Shift �2 (Bi −Π)
C D E F G X X

Right Shift �3 (Π)
X X X A B C D

Input
A B C D E F G

Merge
C D E A B C D

Output
C D E A B C D

Figure 4.3 – A QSN rotating right with Bmax = 7, Bi = 5 and Π = 3.

first. A fully parallel decoder requires enough bit units to handle a full layer, as well as a
parity-check unit that can calculate return messages in a single pass. A decoder prototype
following this was designed and tested. A fully parallel interconnection network is shown in
figure 4.4. The design worked, however the maximum clock frequency fmax possible for the
design was very low as the design required many pipelined components which lengthened
the critical path. An implementation of this decoder design using the code set defined in
the IEEE 802.11n wi-fi standard [13] was generated. This decoder could not fit onto the
hardware development board available for testing. It was determined that the fully parallel
interconnection network consumed too many resources to be useful in practical applications
and a serial design was adopted instead.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

H0

H1

H2

H3

Π0 Π1 Π2

Figure 4.4 – A parallel interconnection network with block size of four.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 41

In the serial design we employ only a single QSN. We are therefore capable of processing
only a single block of messages at a time. A second QSN is not needed as one can be used
for both message directions. A second QSN would not improve the speed of the decoder.
The parity-check module requires all messages to be received prior to calculating return
messages. The parity-check and bit modules are therefore never sending and receiving
messages simultaneously, which means we require only a single QSN. This QSN is used to
permute messages from the bit module to the parity-check module a block at a time. Once
all blocks have arrived, the parity-check module calculates the return messages, which the
same QSN then de-permutes en-route to the bit module. The QSN uses only a single clock
cycle. This can be broken down into multiple clock cycles to increase the maximum clock
frequency, however this was deemed unnecessary.
The QSN is controlled via a permutation value gotten from the ROM module. The permuta-
tion value indicates either the rotation amount or a value representing the nil matrix. In
the case of the nil matrix, the interconnection network needs to pass messages that will not
influence the receiver module at all. The interconnection network therefore passes messages
with a zero value when a nil matrix occurs and the receiver is the bit module. It sends the
maximum positive messages when the receiver is the parity-check module – these represent
that the bit is definitely a zero and do not influence the parity equation.
A further advantage of using the serial approach is that the interconnection network does
not waste any resources even while decoding codes with less block columns. When using
the parallel approach, it is possible that a code has only mb

i ≤ mb
max block columns, which

would leave the last mb
max−mb

i QSNs lying idle. The QSN has been adapted to allow both
left and right rotations. This is easily implemented by switching the barrel shifter controls
and inverting the merge selection process.

4.7.2 Bit Module
The bit module is responsible for calculating the bit values and messages to the parity-check
module using the channel conditional messages and the received parity-check messages. The
interconnection network limits the amount of messages the bit module can send or receive at
once. The bit module can therefore send or receive only a single block’s worth of messages
as this is the throughput allowed by a single QSN. We therefore limit the number of bit
nodes in the bit module to the block size.
The bit node vz value and message calculation for parity-check node fj are provided here
for clarity.

QLLR
vz-fj =

∼j∑
i

QLLR
fi-vz (2.4.12)

The bit node LLR can be calculated as the sum of its messages as

L(vz) =
∑
i

QLLR
fi-vz

These calculations can be substantially reduced by noting that only a single received message
changes every layer. This allows us to carry a total and simply replace a received message
by subtracting the old and adding the new message. A bit node has a maximum of mb

connections to parity-check nodes. We therefore exchange mb + 1 (+1 is for the channel
conditional message) additions for a single addition and subtraction. The running total is
stored in RAM II and the parity-check messages in RAM III as the bit module can only
house a single block’s worth.
A bit node unit has two modes, send mode and receive mode. In send mode it calculates and
sends a message to a parity-check node. In receive mode it receives a message and calculates

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 42

the updated value for the bit. The bit module contains Bmax bit node units, in order to
match the interconnection network. During send mode, each block of bit nodes gets loaded
in sequence and sends its messages. After the parity-check module has processed the entire
layer of messages, the bit module changes to receive mode. The bit node blocks are loaded
sequentially again and receive the messages. This completes a single iteration of decoding.
If the decoder is in detection mode, the receive mode is skipped.
Send mode has two slightly different sub-modes, initial-pass and secondary-pass. Initial-
pass is active during the first pass over every layer, while secondary-pass is active for every
subsequent pass. During initial-pass, the previous parity-check messages are ignored when
calculating the messages for the parity-check nodes and only the bit value is used. In
second-pass, the parity-check messages are subtracted from the the bit value to form the
new messages. Initial-pass is necessary when starting a new decoding – the previous messages
should be zero however RAM III will still hold messages from the last decoding. A full reset
of RAM III would be impractical with respect to time or board area or just impossible.
The use of initial- and secondary-pass allows us to bypass this issue. The RAM III holds
accurate message values during the subsequent passes because the correct values get written
to memory during the previous pass’s receive mode. At the start of a decoding the total
value is reset to the channel conditional message value gotten from RAM I. This removes
the need to add this value to the message and bit value calculations as it is always present
in the total.
The working of a bit node during send and receive mode are shown as algorithms 2 and 3
respectively.
Each algorithm is executed in a single clock cycle. Each bit node unit therefore needs to
be able to read RAM I and RAM II as well as write to RAM II and RAM III once per
clock cycle. RAM has a finite response time, which would slow down the process. This is
circumvented by synchronising the RAM to the same clock and requesting the required read
data one cycle in advance. The writes can occur one cycle later without consequences to
the algorithms as the send and receive modes will be separated by several clock cycles. The
bit module consists of Bmax bit node units which operate in parallel. This allows an entire
block of bit nodes to be processed in a single clock cycle.

Algorithm 2 Bit node sending algorithm.
const id . bit node ID
in layer . current layer
var msg . message to send
var val . bit value

if initial-pass then
if layer = 0 then

val← access_RAM_I(id) . get channel value
else

val← access_RAM_II(id) . get bit value
end if
msg← val . no previous message to subtract

else
val← access_RAM_II(id) . get bit value
msg← val− access_RAM_III(layer-1) . subtract previous message
set_RAM_II(id, msg) . update the bit value. new message will be added in receive

end if
send_message(layer, msg)
return

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 43

Algorithm 3 Bit node receiving algorithm.
const id . bit node ID
in layer . current layer
in msg . message received
var val . bit value

val← access_RAM_II(id) . get bit value
val← val + msg . add new message
set_RAM_II(id, msg) . update bit value
set_RAM_III(id, layer, msg) . update previous message

Important to note is that each message has a fixed bit length. We cannot afford to have
overflow when calculating the messages as the message can then represent the incorrect bit
symbol. A bit value is the sum of at most mb

max messages. The bit value’s bit length is
made long enough to guarantee that no overflow will occur. This includes values in both the
bit unit, as well as the storage in RAM II. When calculating the return message, the result
is quantified to the bit length of a message. The message is saturated if overflow occurs.

4.7.3 RAM
RAM II is designed to be be capable of simultaneous read and write operations during the
same clock cycle. This is necessary to pipeline multiple bit send algorithms in successive
clock cycles. RAM II contains the current bit LLR values, separated into nbmax blocks of
Bmax size. Each bit value has enough bits to store the summation of mb

max messages in
order to prevent overflow. This allows it to provide a block’s worth of memory in a clock
cycle as the memory is contiguous. This is required by the bit module. RAM III does not
require simultaneous read and writes as these occur separately in the bit node send and
receive modes. It does need to be compartmentalised into blocks similar to the RAM II. We
need to store an LLR value for every connection between parity-check nodes and bit nodes.
RAM III therefore contains nbmax ×mb

max blocks of Bmax size where each value is the size
of a message. RAM I is very similar to RAM II. It also has simultaneous read and write
capabilities but stores only message values. This is because we wish to start decoding while
still writing the channel data to memory. RAM I also needs to provide a block of values at a
time. Unfortunately, these blocks do not necessarily occur at the same offset for every code.
Imagine that RAM I contains a contiguous set of values that is equivalent to the channel

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45

write control: 2

read control: 4

Input

Output

Figure 4.5 – RAM II model.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 44

layer
control: 2

column
control: 3

Input Output

Figure 4.6 – RAM III model.

LLR values given as input. If a code with block size B < Bmax is active, then the second
and successive block offsets will not fall on multiples of Bmax. We need to access RAM I
in offsets of B which can be variable for every code. We still need to provide a contiguous
block of memory of size Bmax (the bit module expects this size), however this means that
RAM I needs extra space. Given that we have a maximum codeword length of nmax and a
code Cθ such that

nbθ ×Bmax > nmax

then Cθ may exceed the bounds of RAM I when requesting a block of data. This can be
visualised by imagining a window of size Bmax sliding across RAM I’s contiguous memory
in jumps of size Bθ. When the window gets to its final block it covers the last Bθ values and
overshoots the RAM I block by Bmax −Bθ. This is solved by pre-computing the maximum
possible overshoot and appropriately increasing the size of RAM I. These extra pieces of
memory are minimal with respect to the total and are never written to. They are only used
to guarantee reading complete blocks.

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45

write control: 2

read control: 4
offset: 3

Input

Output

memory

Figure 4.7 – RAM I model.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 45

4.7.4 ROM
The ROM module stores the permutation matrix of every supported code. Each code Cθ
has a matrix of permutation values of size mb

θ × nbθ. A simpler alternative is to use a cube
of size |C| ×mb

max × nbmax where |C| is the total number of codes. This allows for easier
access code, but does waste a great deal of memory, as not all codes require mb

max × nbmax
values.
The ROM module outputs a single permutation value as is needed by the interconnection
network. The permutation value needs to be able to represent both a zero matrix as well
as rotations 0 ≤ Π < Bmax. The common approach is to use a signed integer to represent
the permutation value where a negative value represents the zero matrix and a positive the
rotation value.
An alternative solution is to find an unused rotation value in the range

[
0 : 2dlog2 Bmaxe

)
.

The unused value can then be used to represent the zero matrix. This allows the permuta-
tion value to be represented as an unsigned integer which saves a single bit of storage per
permutation over the integer solution. The downside is that such an unused value might not
exist. This can be countered by simply adding another bit – removing the memory advant-
age. A further downside is that the test for the zero matrix becomes more complex. The
signed integer solution requires checking only the sign bit. The unsigned integer solution
requires comparing every bit of the integer – this does however only occur once in the design
and might be acceptable. Finding such an unused integer is easy as we are using a software
code generator which can pre-compute this for us.
We use the unsigned integer approach as the memory saved outweighs the cost of a more
expensive test comparison. For example, in a decoder that supports the IEEE 802.11n
wi-fi standard [13], the maximum block size is Bmax = 81. The signed implementation
therefore uses eight bits (seven magnitude, one sign) to represent each permutation value
and compares a single bit. The unsigned implementation uses seven bits and can definitely
use any of the values [81 : 128) to represent the zero matrix. Other unused values may
also exist in the [0 : 81) range, but this would need to be checked algorithmically. The
unsigned implementation therefore saves one out of eight bits or 12.5% of ROM memory
and compares seven bits instead of one when compared to the signed implementation.

4.7.5 Parity-check Module
The parity-check module is responsible for calculating the parity-check node to bit node
messages as well as the parity-check syndromes used for code detection. The module receives
a single block of Bmax messages from the interconnection network during the bit node to
parity-check node message cycle. The module has Bmax parity-check units, each representing
a parity-check equation. If code Cθ is active then only the first Bθ units are enabled.
A parity-check unit receives a message per clock cycle while it is active, until it has received
nbθ messages. During these cycles it keeps track of the current minimum, min1, and second
minimum, min2, message magnitudes as well as the XOR of the message signs, s. It further
stores the block index, imin, of the minimum and the incoming message signs. After receiving
the nbθ messages, it calculates a return message for each received message, one clock cycle per
message. The return message Qr’s sign can be calculated by simply XORing the received
message’s sign with s. The magnitude is set equal to min1 if ir 6= imin. If ir = imin then the
magnitude is set to min2. In this way the min-sum parity-check approximation is calculated
cheaply. The equation is repeated here for comparison.

QLLR
fj-vz =

∼z∏
i

sgn(QLLR
vi-fj) ·

∼z
min
i
|QLLR

vi-fj | (2.4.15)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 46

The parity-check syndrome calculation given by [6] is repeated here.

Φθi = 2 tanh−1

∏
j

tanh
(
L(xj |yj)

2

) (2.7.2)

If we apply the approximations used in the min-sum approximation then we get

Φθi =
∏
j

sgn(L(xj |yj)) · min |L(xj |yj)| (4.7.1)

Recall that L(xj |yj) is the channel conditional LLR. Our decoder gets these as its input.
Taking a closer look at message progression through the decoder, we see that for the very
first iteration of a decoding: the channel conditional LLRs are passed from RAM I into
the bit module, and then used directly as the messages to the parity-check module via
the interconnection network. This is verified in algorithm 2. We can therefore calculate
(4.7.1) as the XOR of the received message signs and the minimum of the received message
magnitudes during the very first iteration. We are already performing this calculation – we
have the total sign XOR and first minimum. We pass these to the detection module once
they are calculated. As only Bθ units are active at a time, the parity-check module can only
guarantee actual values for Bmin parity-check syndromes.
A parity-check unit requires a single magnitude comparison and XOR while it is receiving
messages. During sending (and syndrome calculation), it requires only an index comparison
and another XOR. Algorithm 4 describes the functioning of the parity-check module.

4.7.6 Detection Module
The detection module has two purposes. When the decoder is in detection mode, it determ-
ines which code is the most likely code and sets it to be the active code. If the decoder
is in decoding mode, the detection module calculates a confidence value for the currently
active code. If this confidence falls below a predetermined value then the decoder enters
detection mode. The detection module uses the parity-check syndromes received from the
parity-check module for both purposes.
The detection module receives a block of parity-check syndrome values sporadically. This is
because different codes can have a different number of block columns, which determines the
clock cycles it takes the parity-check module to calculate the syndromes. The code detection
method proposed by [6] uses

Γθ = 1
Bθ

∑
i

Φθi (2.7.1)

to calculate the confidence of a code Cθ. We receive all the syndromes Φθi during a single
clock cycle. We can simplify this by removing the normalising factor 1

Bθ
which saves an

expensive division. Instead of the normalising factor, (2.7.1) is limited to use only the first
Bmin syndrome values. This does result in a loss of performance. The inclusion or exclusion
of the normalising factor is left to the user as an option.
During decoding mode, if Γθ falls below the threshold, the detection module triggers de-
tection mode for the decoder. Note that Γθ is only calculated once for a decoding, during
the very first iteration. Once in detection mode, the detection module keeps track of the
most likely code. Each code is activated sequentially and performs a single, first iteration of
decoding – this allows the detection module to receive each code’s syndrome values. Upon
calculating the final code’s confidence, the most confident code is selected as the active code
and decoding is resumed.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 47

Algorithm 4 Parity-check unit execution for a single layer of a code.
in Cθ . current active code
var msg . message to send
var min1 . minimum magnitude
var min2 . second minimum
var mini . minimum index
var sgns . message signs
var sgn . syndrome sign
var i . block index

min← max . initialise
min2 ← max . initialise
sgn← 0 . initialise
i← 0

for i < mb
θ do

msg← receive_msg() . receive next message
sgns[i]← msg.sgn . Store sign
sgn← sgn⊕msg.sgn . XOR all signs

if msg.mag < min1 then
min2 ← min1
min1 ← msg.mag
mini ← i

else if msg.mag < min2 then
min2 ← msg.mag

end if

i← i+ 1
end for

if detecting OR iteration = 0 then
send_syndrome(sgn, min) . send syndrome to detection module

end if

if detecting then
return

end if

i← 0
for i < mb

θ do
if i 6= mini then

send_msg(min1, sgn⊕ sgns[i])
else

send_msg(min2, sgn⊕ sgns[i])
end if

end for

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 48

The detection module needs to perform Bmin summation calculations to calculate Γθ. This
can lower fmax for the decoder if done within a single clock cycle. There is no guarantee
that there will be Bmin clock cycles available to calculate Γθ. The smallest interval between
blocks of parity-check syndromes occurs during the detection mode and is equal to nbmin.
The necessary number of summations necessary per clock cycle to perform Bmin summations
over nbmin cycles is therefore calculated. This is all done as part of preprocessing in the code
generator. The detection module is represented as algorithm 5
An alternative detection algorithm is also available as an option during code generation.
The alternative algorithm totals the number of satisfied parity equations. This is easily
achieved by taking the sign of the parity equation’s syndrome – a positive syndrome indic-
ates the parity equation was more likely satisfied than not. This algorithm is identical in
execution to the previous algorithm, except that this one uses only the sign instead of the
entire syndrome. This solution uses fewer resources but also has less performance. A more
thorough comparison is done using simulations in chapter 6.

4.7.7 Control Module
The control module connects the other modules together as needed. It stores the current
decoder state and determines the next state based on a few internal variables (such as the

Algorithm 5 Detection module using the parity-check syndromes.
const threshold . confidence threshold
var Ci . active code
var syn . received syndromes
var conf . current confidence
var max . highest confidence
var Cmax . best code

if decoding then
syn← receive_syndromes()

conf←
Bmin∑
i=0

syn[i]

if conf < threshold then
enter detection mode

end if
else . detecting..

Ci ← C0
max← 0
for Ci < Cmax do

syn← receive_syndromes()

conf←
Bmin∑
i=0

syn[i]

if conf > max then
max← conf
Cmax ← Ci

end if
Ci ← Ci+1

end for
set_code(Cmax)

end if

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 49

current iteration) and the other module outputs. The module is furthermore responsible for
starting and ending a decoding.
A new decoding is started once a new set of channel conditional LLRs is received. An
external new data flag is made available to the channel conditional inputs. If set, the new
data flag indicates that a new set of LLRs is available. The control module immediately
begins a new decoding regardless of whether the previous one completed or not.
A decoding terminates once the current bit values correspond to a valid codeword or the
maximum number of iterations has been reached. The latter is trivial to implement and we
focus on the former decoding termination. A bit value’s sign corresponds to the same bit
symbol i.e. a positive bit value reflects a 0 and negative a 1. A valid codeword x satisfies
(2.4.1). Put into words, a codeword is valid if it satisfies every parity-check equation,
which implies that the parity-check syndrome should be positive. During every iteration,
our decoder calculates the parity-check equation syndromes for a single block row. We
therefore require N b successive iterations in which every parity-check equation was satisfied.
A further caveat is that the bit symbols may not change throughout these N b iterations.
This is because a bit symbol might change even when the parity-check equations are satisfied,
which in turn might invalidate some of the previous successful iterations. This might occur
if for example a bit value is barely positive, and the bit node receives a new message (to
replace the previous message from that parity-check equation) that has the same sign as the
previous message, but a lower magnitude. A valid codeword is therefore only detected once
N b successive iterations have both all parity-check equations satisfied, and no bit symbol
changes.

4.7.8 Timing Overview
We show various example timing diagrams to showcase the flow of the various information
blocks throughout the decoder modules. Figure 4.8 represents the stages for the very first
iteration of a decoder, figure 4.9 that of a general decoding for iteration 0 < i < nb,
figure 4.10 for decoding iterations i ≥ nb and figure 4.11 that for a decoder in detection
mode.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 50

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

RAM I wr A0 A1 A2 A3

RAM I rd A0 A1 A2 A3

RAM II wr A0 A1 A2 A3 A0 A1 A2 A3

RAM II rd A0 A1 A2 A3

RAM III wr A0 A1 A2 A3

RAM III rd

Bit A0 A1 A2 A3 A0 A1 A2 A3

ROM A0 A1 A2 A3 A0 A1 A2 A3

Interconnection
Network A0 A1 A2 A3 A0 A1 A2 A3

Parity-Check A0 A1 A2 A3 A0 A1 A2 A3

Detection A 1
3

A 2
3

A 3
3

Figure 4.8 – Timing diagram for a decoder in decode mode for the very first iteration.
The active code CA has the most block columns nb

max = 4. The subscripts represent the
block indices and indicate which block each module is busy processing. The detection module
subscripts indicate the progress with calculating the code confidence. The detection module
has a maximum of three clock cycles to calculate this due to another limiting code CB with
nb

B = 3. The diagram represents the flow of information for the very first iteration of the
decoding process.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

RAM I wr

RAM I rd

RAM II wr A0 A1 A2 A3 A0 A1 A2 A3

RAM II rd A0 A1 A2 A3 A0 A1 A2 A3

RAM III wr A0 A1 A2 A3

RAM III rd

Bit A0 A1 A2 A3 A0 A1 A2 A3

ROM A0 A1 A2 A3 A0 A1 A2 A3

Interconnection
Network A0 A1 A2 A3 A0 A1 A2 A3

Parity-Check A0 A1 A2 A3 A0 A1 A2 A3

Detection

Figure 4.9 – Timing diagram for a decoder in decode mode for the iterations following the
first iteration but while the bit module is still in the initial-pass phase. The active code CA

has nb
A = 4. The subscripts represent the block indices and indicate which block each module

is busy processing. The only change from figure 4.8 is the exclusion of the RAM I wr and rd
cycle – it is replaced by the RAM II rd. This is because the channel conditional LLRs only
need to be written to RAM I once and RAM II now stores the bit values.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. HARDWARE DESIGN 51

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

RAM I wr

RAM I rd

RAM II wr A0 A1 A2 A3 A0 A1 A2 A3

RAM II rd A0 A1 A2 A3 A0 A1 A2 A3

RAM III wr A0 A1 A2 A3

RAM III rd A0 A1 A2 A3

Bit A0 A1 A2 A3 A0 A1 A2 A3

ROM A0 A1 A2 A3 A0 A1 A2 A3

Interconnection
Network A0 A1 A2 A3 A0 A1 A2 A3

Parity-Check A0 A1 A2 A3 A0 A1 A2 A3

Detection

Figure 4.10 – Timing diagram for a decoder in decode mode for an iteration while the bit
module is in the secondary-pass phase. The active code CA has nb

A = 4. The subscripts
represent the block indices and indicate which block each module is busy processing. The
change from figure 4.9 is the inclusion of the RAM III rd cycle – previous messages now need
to be taken into account.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

RAM I wr

RAM I rd A0 A1 A2 B0 B1 C0 C1 C2 C3

RAM II wr

RAM II rd

RAM III wr

RAM III rd

Bit A0 A1 A2 B0 B1 C0 C1 C2 C3

ROM A0 A1 A2 B0 B1 C0 C1 C2 C3

Interconnection
Network A0 A1 A2 B0 B1 C0 C1 C2 C3

Parity-Check A0 A1 A2 B0 B1 C0 C1 C2 C3

Detection A 1
2

A 2
2

B 1
2

B 2
2

C 1
2

C 2
2

Figure 4.11 – Timing diagram for a decoder in detection mode. The supported codes are
CA, CB and CC which have block columns nb

A = 3, nb
B = 2 and nb

C = 4. The letters indicate
which code the information is associated with and the subscript the block index. The detection
module has at most two clock cycles to calculate a code’s confidence because nb

min = 2, the
subscripts here indicate the completion of this calculation.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Software Design

This chapter contains the design of the software system. We start with how a user can
interact with the system. This is followed by a look at the code generation and simulation
subsystems. Finally, the testing environment used to validate the simulation results is
discussed.
The software is written in the Go Programming Language1 (GPL). The software tool is
accessible via the command line only. Available options can be set by appending ‘-option
value’ to the command line call. Most options have default values and may be omitted.
A notable exception to this is the definition of the set of QC-LDPC codes to be used by
the tool – these are always required. As discussed in section 2.6, a QC-LDPC code Cθ can
be fully described by its permutation matrix Πθ and block size Bθ. The tool requires an
Extensible Markup Language (XML) file containing the set of codes as input. The XML
file should have the general format shown in code snippet 5.1. Each code description may
describe the code as either a block size, permutation matrix combination (shown in code
snippet 5.2) or as a block size, permutation matrix file name combination (shown in code
snippet 5.3) or by using a valid name for a built-in code (shown in code snippet 5.4). A list
of all built-in code names can be obtained by running the tool with the ‘-builtin’ option. A
permutation matrix file should contain the permutation values using space and new line as
column and row separators. A nil permutation should be represented as a ‘-1’.

1http://golang.org/

Code snippet 5.1 – XML code set file.
<code>

<!-- first code description -->
</code>
<code>

<!-- second code description -->
</code>
...
<code>

<!-- last code description -->
</code>

52

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 53

Code snippet 5.2 – XML block size, permutation matrix code description.
<code>

<size>3</size>
<matrix>

1 0 -1
2 -1 1

</matrix>
</code>

Code snippet 5.3 – XML block size, matrix file code description.
<code>

<size>3</size>
<file>example -file -path </file>

</code>

Code snippet 5.4 – XML built-in code description.
<code>

<name>IEEE 802.11 648 1/2 </name>
</code>

The code generation subsystem is activated by specifying the ‘-generate’ option. Similarly,
the simulation subsystem is activated using the ‘-simulate’ option. Both subsystems may be
activated simultaneously. A list of general options common to both subsystems is presented
here.

-codes string
XML file path containing the QC-LDPC codes.

-bits int
Bit length of the messages.

-iterations int
Maximum iterations before halting decoding.

-threshold float
Detection threshold.

5.1 Code Generation Subsystem

The code generation subsystem uses the user-provided set of QC-LDPC codes to generate
VHDL files which contain the code for the hardware decoder described in section 3.1. This
subsystem has the following extra options available:

-path string
Target file path location for the generated files.

-detectionNorm bool
Whether or not to use a normalising factor in the detection algorithm.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 54

-detectionAlg string
Type of detection algorithm to use. Currently limited to the summation and count
algorithms discussed in section 4.7.6. If it is an invalid choice (including blank), a list
of available options is displayed.

The code generation subsystem generates the following files:

bit_unit.vhd
Acts as a single bit node. Calculates bit values and messages to the parity-check nodes.

bit_module.vhd
Houses a single block’s worth of the bit units.

control_module.vhd
Connects and controls the various modules and their states. Determines when a de-
coding starts and ends.

decoder_pkg.vhd
A package containing various constants and type declarations needed by multiple
modules.

detection_module.vhd
Uses the syndromes to determine either the most likely code (if in detection mode) or
if the current code falls below the threshold (starting detection mode).

interconnection_network.vhd
Rotates a block of messages left or right.

parity_unit.vhd
Acts as a single parity-check node. Calculates the parity-check equation’s syndrome
as well as messages to the bit nodes.

parity_module.vhd
Contains a block of parity-check units.

ram_I.vhd
Stores the channel conditional messages.

ram_II.vhd
Stores all current bit values.

ram_III.vhd
Stores all messages received by the bit_units.

rom.vhd
Stores the permutation matrix of every code.

Each file contains a single module, or entity as it is called in VHDL. A more detailed de-
scription of the various modules is available in chapter 4. All of the modules rely on the
types and constants declared in the ‘decoder_pkg’ module. This allows all files to be static-
ally2 created, except for the ‘decoder_pkg.vhd’, ‘detection_module.vhd’ and the ‘rom.vhd’
files. The ‘rom’ module stores the permutation matrices and therefore cannot be completely
static. The ‘detection_module.vhd’ contents are dependent on the ‘-detectionNorm’ and
‘-detectionAlg’ options.

2Static implying the file contents do not change – this allows them to be represented as a constant string
that requires no input.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 55

5.2 Simulation Subsystem

The simulation subsystem is meant to relay relevant information to the user about the
hardware decoder’s expected performance. This includes information to help the user choose
the best options e.g. the ideal message bit length or which detection algorithm to use. The
subsystem achieves this by providing performance graphs using variations of the relevant
variables. For example, the bit error rate (BER) is shown graphically for a variety of message
bit lengths. A list of available simulations is shown below.

BER vs. SNR
Typical code performance graph. Shows the average BER as well as the individual
codes’ BER.

BER for message bit length vs. SNR
Average BER for different message bit lengths.

correct detection rate vs. SNR
The average correct detection rate when the decoder is in detection mode i.e. how
often the correct code is chosen. Includes all versions of the detection type (summation,
counting).

codeword detection delay vs. SNR
Average number of codewords it takes to enter detection mode when the current code
is incorrect.

average decode iterations vs. SNR
Average number of iterations it took to successfully decode.

The subsystem is set up to be as flexible as possible in order to allow for future development.
Two features of the GPL play a key role in achieving this, namely interfaces and functions.
Interfaces are GPL’s solution for abstraction. An interface is defined as a collection of func-
tion prototypes. Any type that implements every function in this collection automatically
conforms to this interface and can be used in any place where this interface is used. For
example, if an interface A is defined as the collection of methods c(), d() and some function
F (A) which requires A as an input, then if some type B implements functions B.c(), B.d()
then F (B) is a valid function call. A function is defined in the GPL as shown in code
snippet 5.5. where in, T, out represent inputs, variable types and outputs and t refers to the
optional variable implementing the function. The code in snippet 5.6 shows the interface
example.

Code snippet 5.5 – Go Programming Language function definition.
func (t T) name(in1 T , in2 T ...) (out1 T , out2 T ...)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 56

Code snippet 5.6 – Go Programming Language interface example
// definition of interface A
type A interface {

c()
d()

}

// definition of function F(A)
func F(v A) {

// execute function
}

// definition of type B (similar to C-style structures)
type B struct {

// variables forming part of type B
}

// define functions c, d for B
func (v B) c() {

// execute c()
}
func (v B) d() {

// execute d()
}

// snippet using F(B)
...

var varB B // declare a variable of type B
F(varB) // legal call

...

GPL supports the following function related features that enable flexibility:

first class functions
Allows using functions as variables.

higher order functions
Functions can have other functions as input or output.

functions as types
A function can be declared as a type. This is similar to the interface concept, but
applies to only a single function. This allows for multiple versions of a single function
to exist.

anonymous functions
An anonymous function may be declared within a limited scope, including within
another function. This is mostly useful when using a function to return a secondary
function. The secondary function can then be defined using inputs to the first function.

In order to simulate meaningful results, channel conditional LLRs are required. This means
we need to encode an information bit sequence into a valid codeword for some code Cθ,
transmit it across some medium (noisy or otherwise) and receive and convert it to LLR
values. An example model of this was shown in figure 3.5. The information bit sequence
is generated randomly. Many potential encoding algorithms are detailed in section 2.5.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 57

We allow for any potential encoding method by defining an encoding function type – any
encoding method that fulfils this prototype can be used during encoding. Similarly, the
transmission and conversion to LLR values is combined into a single function type. This is
done because although the transmission itself can usually be modelled as a modulator and a
noisy channel, this is not always the case. Not all channel models allow for modulation e.g.
a binary symmetric channel. We therefore decided to combine the two. This combination
often allows for simplification of calculations and therefore performance gains. The encode
and transmission prototypes are shown in code snippet 5.7.
The simulations are all related to either detection or decoding. The simulations are separated
into these two types by defining a configuration interface for each. Each configuration needs
to provide a set of methods that is required for the simulation. The two interfaces are shown
in code snippet 5.8.
This allows a wide variety of different method combinations to be implemented easily. For
example, in one simulation the correct detection rates of two nearly identical decoders is
compared. The only difference is that one decoder uses the average of the syndromes to
calculate a code’s confidence (it uses every available syndrome), and the other uses only the

Code snippet 5.7 – Encoding and transmission function prototypes.
// encode function prototype definition
// [] bool - an array of boolean values
type Encode (infoBits [] bool) (codeword [] bool)

// transmission and llr conversion function
// [] float64 - an array of 64- bit floating point values
type Transmit (codeword [] bool) (llrs [] float64)

Code snippet 5.8 – Simulation configurations.
// detection simulation configuration
type DetectionSimulationConfig interface {

// converts channel LLRs to messages
ToMsgs (llrs [] float64) (msgs [] float64)

// calculates parity -to -bit messages and syndromes
ParityUpdate (msgsIn [] float64) (msgsOut , syndromes [] float64)

// calculates a code ’s confidence from syndromes
CodeConfidence (syndromes [] float64) (confidence float64)

}

// decoder simulation configuration
type DecoderSimulationConfig interface {

// converts channel LLRs to messages
ToMsgs (llrs [] float64) (msgs [] float64)

// calculates parity -to -bit messages and syndromes
ParityUpdate (msgsIn [] float64) (msgsOut , syndromes [] float64)

// calculates bit -to - parity messages and bit values
BitUpdate (msgsIn [] float64) (msgsOut , values [] float64)

}

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 58

first Bmin syndromes and therefore does not require averaging (we use this in the hardware
decoder). Both of these ‘CodeConfidence’ functions are created in the same way. We utilise
GPL’s higher order functions to create a ‘CodeConfidence’ function that sum either the first
B syndromes if B > 0 or uses all available syndromes. A code snippet of this is shown in
snippet 5.9.
The simulation subsystem has the following additional options:

-encoder string
Encoder method name to use for encoding codes. Currently only has one option.

-bitStart int
A message’s least significant bit’s (LSB) index. This is mostly used when calculating
message values to ensure that the message value falls within the bit range specified by
-bitStart and -bits.

-snrStart float
Start of SNR simulation range in decibels.

-snrEnd float
End of SRN simulation range in decibels.

-ticks int
Number of ticks between snrStart and snrEnd.

-simulations int
Number of simulation trials to run per tick per configuration.

-simIn string
Name of simulations to include. This option can be repeated to include multiple
simulations. If excluded, all simulations are run. Invalid values prompt a list of
options.

-simEx string
Name of simulations to exclude. This option can be repeated to exclude multiple
simulations. Invalid values prompt a list of options.

A general simulation run consists of iterating over every code in the provided set, encoding
-simulations random codewords and using these to simulate the various simulation config-
urations as applicable.

Code snippet 5.9 – Higher order function example.
// higher order function - returns a function
func CreateCodeConfidenceFunc (B int) func ([] float64) (float64) {

if B > 0 {
...
return CodeConfidence (syndromes [] float64) (confidence float64) {

... // use only B syndromes
}

} else {
...

return CodeConfidence (syndromes [] float64) (confidence float64) {
... // use all syndromes

}
}

}

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 59

5.3 Test Environment

In this section we discuss the testing and validation of the hardware design. The design’s
performance and functionality are analysed to validate the decoder is operating as expected.
The simulation software is also validated against the decoder, to ensure that the software
model is sound. The code set used, consisted of all QC-LDPC codes defined in the IEEE
802.11n standard [13]. This set contains twelve codes in total. The standard defines four
code rates, 1

2 ,
2
3 ,

3
4 ,

5
6 and three block sizes B ∈ {27, 54, 81}. Each code rate is defined

once per block size, giving a total of twelve codes. Each code has the same number of
block columns, N b = N b

max = 24 which means that the three block sizes correspond to
codeword lengths N ∈ {648, 1296, 1944}. More details can be found in appendix A. This
particular code set was chosen as it is the code set used by [6] from which we got the code
detection algorithm. This gives us results to compare against, to ensure the algorithms are
correct. In addition, the codes outlined in IEEE 802.11n are trivially encodable using an
algorithm described in [14]. The simplicity of this algorithm removes the encoding process
as a potential source of programmatic errors.
A DSP Cyclone III (EP3C120F780) FPGA development board was available for hardware
testing purposes. This board is manufactured by Altera and we therefore used Altera’s
Quartus II (v13.sp1 - 64bit) FPGA design software to compile and synthesise the hardware
code. Hardware simulations were run using Altera’s ModelSim (version 10.1d) software.
The development board unfortunately did not have a serial port that we could access. A
serial port does exist but it is solely accessible using Altera Intellectual Property (IP) cores.
In order to communicate between a computer and the development board it was necessary
to add a Altera Nios II processor to the hardware design. The Nios II functions as a limited
processor and is capable of running a custom limited-C program. This processor can be
augmented with various Altera IPs, including a JTAG serial communications core, which
gives us access to the serial port. The Nios II is visible to our hardware decoder as a black
box entity with a variety of STD_LOGIC_VECTOR ports, whose number, bit length and
signal direction (IN, OUT, INOUT) can be set during the Nios II creation process. The C
program running on the Nios II has access to these ports via two C functions:

int IORD_ALTERA_AVALON_PIO_DATA (PIO_BASE);
IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE , int);

The former function allows reading an integer from a port, and the latter writing an integer
to it. ‘PIO_BASE’ is the base address of the target port and can be found in the ‘system.h’
header file which accompanies the Nios II processor. We used six such ports to enable
communication between the C program running on the Nios II and our hardware decoder.
This communication allows us to control the decoder’s state and read it’s status. The ports
used were:

cmd
5 bit command identifier. Used to tell the decoder which command to execute.

exec
An interrupt flag. On interrupt, execute the current command.

rd
16 bit read data register. Contains the data for all read commands.

wr
16 bit write data register. Contains the data for all write commands.

index
8 bit index for indexing into various arrays during commands.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 60

rdy
A ready flag indicating that the decoder is ready for more commands.

The C program sets the command type, and sets the index and write data if necessary. The
C program then sets the exec flag. The decoder executes the command. Once complete the
ready flag is set, and any relevant data may be read from the read data register. In this
manner, the decoder is controlled by the C program. Key controllable aspects include:

• clock (setting high and low),

• RAM contents (writing channel values, reading bit values and messages),

• decoder mode,

• and iteration number.

A computer can communicate with the C program using the serial port. Altera provides
a terminal interface for communicating with the Nios II processor. Interactions include
starting, stopping and pausing the processor as well as sending and receiving data on its
StdIn, StdOut and StdErr data streams. The Nios II processor is generally started by
utilising an Eclipse plug-in that comes bundled with Quartus II. Unfortunately, doing so
binds the Nios II terminal interface to Eclipse which does not allow our software access. We
circumvent this by starting the Nios II processor from the command line, running the Eclipse
plug-in’s Nios II start executable. This leaves the Nios II terminal free to be accessed by
our software. This enabled communication between our software and the hardware decoder
via the C program running on the Nios II hardware processor. A downside to this is that
the decoder will not run at full speed. The decoder clock needs to be controlled as an input
in order to reliably be able to predict the decoder’s state.
Initially, the various hardware modules and software algorithms were tested individually to
ensure they perform as expected. For example, a test bench was written that tests each input
and rotation permutation for the interconnection network in hardware. The full hardware
decoder was then inspected by hand, using ModelSim, to ensure that data is flowing between
modules as expected. Test benches were then written and executed in ModelSim, using
values provided by the simulation software. For example, to test code detection, realistic
channel conditional LLRs were computed and used as input to the hardware decoder. The
decoder was then forced into detection mode and the code confidences were compared to
those obtained using the simulation software. Similar test benches were run for other decoder
states. Channel conditional LLRs were generated using BPSK modulation with AWGN.
The final tests are identical to the previous tests except that the decoder is running on the
development board and not being simulated in ModelSim. These tests utilise the direct
communication we developed between our software and the hardware decoder via the C
program running on the Nios II processor. A test might proceed as follows:

1. The simulation software decoder is initialised to some state e.g. channel conditional
LLRs are set, decoder is put into detect mode.

2. The hardware decoder is initialised to the same state via the C program.

3. The software simulated decoder performs some operation e.g. calculates bit messages.

4. The hardware decoder is commanded to perform the same operation via the C pro-
gram.

5. The hardware decoder’s state is read via the C program.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. SOFTWARE DESIGN 61

6. The software and hardware decoders’ states are compared.

This process may be repeated many times for a single test. The next chapter showcases
some simulation results obtained using the simulation tool. We show how these may be
leveraged to optimise the hardware decoder’s design.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Simulation Results

In this chapter, we present some simulation results and demonstrate how these can be
leveraged to make informed design choices for a hardware decoder. The set of codes used
for these simulations are the codes defined in the IEEE 802.11n standard [13]. Details for
these codes can be found in appendix A.
We shall be using simulation results to choose the following options for this decoder:

• message bit length,

• message LSB index,

• detection algorithm,

• confidence normalisation,

• maximum iterations.

The LSB index does not play a direct role in the decoder, but determines the resolution we
should be using when calculating the channel conditional LLRs. We focus on the detection
related simulations, as these are likely novel to the reader.
The first simulation results are shown in figure 6.1. It plots the average correct detection
rates of two decoders. The first decoder calculates the parity-check equation syndromes op-
timally (2.7.2), whereas the second decoder uses the min-sum approximation (4.7.1). Apart
from this, both decoders are set up optimally i.e. channel conditional messages are rep-
resented using floating point numbers, all parity-check equation syndromes are considered
(using all layers), the detection algorithm is optimal (2.7.1) and uses a normalising factor.
Somewhat surprisingly, the min-sum approximation outperforms the optimal syndrome cal-
culation decoder by a small margin. The difference is minimal, and may be explained by
numerical instability experienced by the transcendental functions found in the optimal cal-
culation.
The next simulation, figure 6.2, shows the average correct detection rates of decoders with
a variety of LSB indices. As mentioned at the start of the chapter, this determines the
resolution of the channel conditional LLRs used as decoder input. The decoders require
a finite message bit length in order to utilise the LSB index. Each decoder’s message bit
length is set to sixteen, uses the optimal detection algorithm with a normalising factor and
considers all syndromes when calculating code confidence. The syndromes are calculated
using the min-sum approximation in order to represent the hardware decoder. From the
simulation, we see that performance converges from LSB index zero downwards. We decide
upon using a LSB index of −1.

62

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIMULATION RESULTS 63

−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR (dB)

C
or
re
ct

D
et
ec
tio

n
R
at
e

Parity-check syndrome functions

optimal
min-sum

Figure 6.1 – Comparison of parity-check syndrome functions.

−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR (dB)

C
or
re
ct

D
et
ec
tio

n
R
at
e

Message LSB index

-3
-2
-1
0
1
2
3

Figure 6.2 – Comparison of message LSB indices.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIMULATION RESULTS 64

−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR (dB)

C
or
re
ct

D
et
ec
tio

n
R
at
e

Message bit lengths

32
16
8

Figure 6.3 – Comparison of message bit lengths.

Figure 6.3 shows the average correct detection rates for decoders using a variety of common
bit lengths. The decoders have a message LSB index of −1, calculate syndromes using the
min-sum approximation, use the optimal detection algorithm with a normalising factor and
consider all syndromes. The various message bit lengths show no performance difference at
all. The smallest bit length, 8, is chosen.
The simulation in figure 6.4 focusses on the number of parity-check equation syndromes used
to calculate code confidence. The syndromes used is somewhat tied into using a confidence
normalisation factor. If we use only Bmin syndromes, then the normalisation factor can be
ignored. Up till now, simulations have considered all syndromes i.e. including all layers. The
hardware decoder considers only the very first layer in order to save time. The simulation
compares decoders which use all syndromes, a single layer of syndromes and Bmin = 27
syndromes. Using only a single layer’s syndromes, degrades the detection performance
by ∼ 2 dB. Using Bmin syndromes degrades it by a further ∼ 1 dB. It might be worth
considering using all syndromes, however this is not currently implemented as an option for
hardware. We decide to not use a normalising factor, and only use Bmin = 27 syndromes.
All previous choices were kept for these decoders.
The simulation in figure 6.5 shows the performance of the optimal (summing the syndromes)
confidence calculation versus the count algorithm. The performance is compared using all
syndromes, a single row’s syndromes and Bmin syndromes. The more syndromes are used,
the more the optimal confidence algorithm gains over the count algorithm. This advantage is
eroded when using only Bmin syndromes; the count algorithm even outperforms the optimal
algorithm at the higher SNR values. As no detection performance is gained from using the
optimal confidence calculation algorithm (we are using Bmin syndromes), we decide to use
the count algorithm as it is cheaper computationally.
The final detection simulation, figure 6.6, compares the performance of the optimal decoder
from figure 6.1 to our final decoder design. Our design degrades performance by just over 2
dB.
Figure 6.7 shows the average iterations taken to complete a decoding for our decoder. The
maximum iterations was set to one hundred. In the cases where a decoding was unsuccessful
the iterations used would therefore be one hundred. This simulation helps the user select

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIMULATION RESULTS 65

−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR (dB)

C
or
re
ct

D
et
ec
tio

n
R
at
e

Number of syndromes

all
layer
Bmin

Figure 6.4 – Comparison of number of parity-check syndromes used for detection.

−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR (dB)

C
or
re
ct

D
et
ec
tio

n
R
at
e

Confidence calculation function

optimal all
count all

optimal row
count row

optimal Bmin
count Bmin

Figure 6.5 – Comparison of detection algorithms.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIMULATION RESULTS 66

−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR (dB)

C
or
re
ct

D
et
ec
tio

n
R
at
e

Optimal decoder vs. our decoder

optimal
design

Figure 6.6 – Comparison of the optimal decoder and our design.

0 2 4 6 8 10 12

0

20

40

60

80

100

SNR (dB)

ite
ra
tio

ns

Average decoding iterations

Figure 6.7 – Average decoding iterations used.

the maximum iterations to use in the decoder design. We decide that our decoder will be
operating in SNR conditions > 4 dB, and settle on a maximum of thirty iterations.
To ensure that thirty iterations is enough, we use an iteration frequency simulation, shown
in figure 6.8. In this simulation we fixed the SNR at 4 dB. It shows the frequency of how
many iterations were needed to successfully decode. Note the collection at thirty iterations.
This marks the codes which could not be completed in the required iterations. This could
be minimised by increasing the maximum iterations. Note that this simulations checks for a
correct codeword every iteration, and does not have a delay of mb iterations as the hardware
decoder would. This was done because this simulation uses the average across all codes in

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. SIMULATION RESULTS 67

0 5 10 15 20 25 30

0

2

4

6

8

10

iteration

fr
eq
ue
nc
y
(%

)

Iteration frequency

Figure 6.8 – Average decoding iterations used.

the set, and mb changes per code. This would give skewed frequency results.
For our final simulation, figure 6.9, we simulate the expected transmission BER for each of
the codes in the set.

1 2 3 4 5

0.00

0.05

0.10

0.15

SNR (dB)

B
ER

Code tranmission BER

648 1/2
648 2/3
648 3/4
648 5/6
1296 1/2
1296 2/3
1296 3/4
1296 5/6
1944 1/2
1944 2/3
1944 3/4
1944 5/6

Figure 6.9 – IEEE 802.11n codes’ BER.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusion

LDPC codes form part of a set of modern FEC codes that utilise iterative decoding al-
gorithms. We showed how the roots of these algorithms can be traced to a common origin
using the SPA, where links between iterative and non-iterative decoding can be established.
As was shown in section 2.3, common decoding algorithms can be expressed using variations
of the SPA, typically graphically represented as factor graphs. Non-iterative decoding al-
gorithms have acyclic factor graphs, which implies that the algorithms are precise. Iterative
algorithms’ graphs contain cycles, which precludes the algorithm from being precise. This
forces it to be an iterative process, whose results approximate the desired outcome. LDPC
decoding was shown to be an iterative algorithm in section 2.4. The LDPC decoding al-
gorithm was expressed using message passing, using a variety of message formats, culmin-
ating in the LLR format. The various message formats’ effect on message calculation were
examined, with the LLR format requiring the tanh and tanh−1 transcendental functions.
We showed how these are commonly approximated using the min-sum approximation in
section 2.4.2. In general, LDPC codes have quadratic encoding complexity with respect to
codeword length. In section 2.5, we showed numerous solutions to achieve linear encoding
complexity. We discussed a family of structured LDPC codes, called QC-LDPC codes. A
QC-LDPC code’s parity-check matrix can be sectioned into equally sized, square blocks,
such that each block is either a zero matrix, or a cyclic permutation of the identity matrix.
In this thesis, we designed a hardware decoding solution for code sets, such as those defined
in modern communications standards [1], containing multiple QC-LDPC codes. The design
required flexibility, in that these codes may have non-uniform code rates, block sizes, block
rows, block columns and codeword lengths. Such a decoder would further benefit from being
autonomous, as this allows for systems in which the encoder and decoder have no means to
communicate a change in code.
A hardware decoder design was summarised in section 3.1. This was followed by a in-depth,
proof-of-concept design of a hardware decoder in chapter 4. The message routing network
was identified as the main cause of hardware complexity in LDPC decoders, particularly
for decoders allowing for multiple block sizes. The design overcame this by using a QSN
– this allows it to rotate a sub-block of size B < Bmax, taking care of non-uniform block
sizes. Other non-uniformity issues were dealt with by using a block-serial design i.e. each
hardware module processes a block’s worth of data at a time. This allows the design to
handle any code rate, block rows, block columns and codeword length differences amongst
its supported codes. Autonomous behaviour was added to the design by implementing a
detection algorithm proposed in [6]. This algorithm assigns each code in a set a confidence
value based on the code’s average syndrome APP. The code with the highest confidence is
then the most likely code. This detection algorithm is engaged once the currently active
code’s initial confidence value falls below a user-set threshold. In this manner, the decoder
potentially detects a change in code at the encoder. A few adaptions to the detection

68

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION 69

algorithm are available as options to allow the user a trade-off between hardware complexity
and performance.
A software system was developed. This system has two subsystems – code generation and
simulation. The code generation subsystem automatically generates VHDL code based on
user settings. The simulation subsystem enables the user to make decisions about these
settings. It provides decoder performance graphs (based on simulations) which allows the
user to make informed trade-offs between performance and complexity. These subsystems
were discussed broadly in sections 3.2 and 3.3, with a deeper look in chapter 5.
An example of how the simulation subsystem can be leveraged to design a decoder was
presented in chapter 6. The design was aimed at incorporating the twelve codes specified
by the IEEE 802.11n standard [13]. The simulation results led to a design which, although
it had a ∼ 2 dB performance loss, still managed to correctly detect the codes 100% at SNR
values above ∼ 5 dB.
The current state of the decoder design and software system allow for a great deal of future
developments. The simulation subsystem can be significantly improved by allowing more
fine tune control over individual simulations. This can be achieved by enabling configuration
files for simulations, similar to the XML file used to define the code set. Care would need
to be taken to ensure that the file layout is simple and the options straightforward to
understand. The available transmission options can be expanded drastically, as it currently
only caters for BPSK over an AWGN channel. The list of available simulations can also be
increased. Simulations involving timing diagrams may be beneficial e.g. to approximate how
many clock cycles will be needed, on average, to decode successfully. The code generation
subsystem can be extended by adding other target hardware languages and platforms. A
further option may be to target software platforms, such as highly parallel servers. This
would require a new design, but the decoding principle can remain the same.
The hardware decoder design can be improved significantly, as this was a simple proof-
of-concept design. The easiest way to do this would be to add a parallelism factor to
the code generation options. This factor would reflect how many blocks can be processed
in parallel by the system. A factor of 1 would result in the same design as is currently
implemented, with each module processing a single block at a time. A factor q would have
each module processing q blocks simultaneously. A further topic worth investigating is the
reverse engineering of the permutation matrix. If possible, this might enable a decoder
system in which a code’s permutation matrix can be retrieved on the fly by analysing the
received channel conditional LLRs. This can replace the current code set and code detection
modules, and allow the decoder to support all QC-LDPC codes with B < Bmax, where
Bmax would be arbitrarily chosen. Decoding would proceed using the reverse-engineered
permutation matrix, until the syndrome APP falls below an arbitrary threshold. This would
then trigger a new reverse engineering of the permutation matrix. A reverse engineering
methodology that might serve as a starting point is proposed by Jing et al. [15].
Overall, the software system and decoder design fulfils our thesis aims. The decoder design
is flexible, and can support multiple QC-LDPC codes with different block sizes and char-
acteristics. The design was successfully automated by adding a detection module, which
detects a change in code. This detection has 100% accuracy above an SNR of ∼ 8 dB, using
the IEEE 802.11n standard’s code set [13]. The code generation subsystem successfully gen-
erates VHDL code for the decoder design. The simulation subsystem provides information
pertinent to making design choices. The subsystem utilises GPL’s functions to abstract the
simulation software, which allows for an easy extension of its capabilities.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

IEEE 802.11n

Code Name Rate B nb mb n m k

IEEE 648 1/2 1
2 27 24 12 648 324 324

IEEE 648 2/3 2
3 27 24 8 648 216 432

IEEE 648 3/4 3
4 27 24 6 648 162 486

IEEE 648 5/6 5
6 27 24 4 648 108 540

IEEE 1296 1/2 1
2 54 24 12 1296 648 648

IEEE 1296 2/3 2
3 54 24 8 1296 432 864

IEEE 1296 3/4 3
4 54 24 6 1296 324 972

IEEE 1296 5/6 5
6 54 24 4 1296 216 216

IEEE 1944 1/2 1
2 81 24 12 1944 972 972

IEEE 1944 2/3 2
3 81 24 8 1944 648 1296

IEEE 1944 3/4 3
4 81 24 6 1944 486 1458

IEEE 1944 5/6 5
6 81 24 4 1944 324 1620

Figure A.1 – IEEE 802.11n code characteristics.

70

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. IEEE 802.11N 71

0 - - - 0 0 - - 0 - - 0 1 0 - - - - - - - - - -
22 0 - - 17 - 0 0 12 - - - - 0 0 - - - - - - - - -
6 - 0 - 10 - - - 24 - 0 - - - 0 0 - - - - - - - -
2 - - 0 20 - - - 25 0 - - - - - 0 0 - - - - - - -
23 - - - 3 - - - 0 - 9 11 - - - - 0 0 - - - - - -
24 - 23 1 17 - 3 - 10 - - - - - - - - 0 0 - - - - -
25 - - - 8 - - - 7 18 - - 0 - - - - - 0 0 - - - -
13 24 - - 0 - 8 - 6 - - - - - - - - - - 0 0 - - -
7 20 - 16 22 10 - - 23 - - - - - - - - - - - 0 0 - -
11 - - - 19 - - - 13 - 3 17 - - - - - - - - - 0 0 -
25 - 8 - 23 18 - 14 9 - - - - - - - - - - - - - 0 0
3 - - - 16 - - 2 25 5 - - 1 - - - - - - - - - - 0

Figure A.2 – Permutation Matrix: IEEE 648 1/2

25 26 14 - 20 - 2 - 4 - - 8 - 16 - 18 1 0 - - - - - -
10 9 15 11 - 0 - 1 - - 18 - 8 - 10 - - 0 0 - - - - -
16 2 20 26 21 - 6 - 1 26 - 7 - - - - - - 0 0 - - - -
10 13 5 0 - 3 - 7 - - 26 - - 13 - 16 - - - 0 0 - - -
23 14 24 - 12 - 19 - 17 - - - 20 - 21 - 0 - - - 0 0 - -
6 22 9 20 - 25 - 17 - 8 - 14 - 18 - - - - - - - 0 0 -
14 23 21 11 20 - 24 - 18 - 19 - - - - 22 - - - - - - 0 0
17 11 11 20 - 21 - 26 - 3 - - 18 - 26 - 1 - - - - - - 0

Figure A.3 – Permutation Matrix: IEEE 648 2/3

16 17 22 24 9 3 14 - 4 2 7 - 26 - 2 - 21 - 1 0 - - - -
25 12 12 3 3 26 6 21 - 15 22 - 15 - 4 - - 16 - 0 0 - - -
25 18 26 16 22 23 9 - 0 - 4 - 4 - 8 23 11 - - - 0 0 - -
9 7 0 1 17 - - 7 3 - 3 23 - 16 - - 21 - 0 - - 0 0 -
24 5 26 7 1 - - 15 24 15 - 8 - 13 - 13 - 11 - - - - 0 0
2 2 19 14 24 1 15 19 - 21 - 2 - 24 - 3 - 2 1 - - - - 0

Figure A.4 – Permutation Matrix: IEEE 648 3/4

17 13 8 21 9 3 18 12 10 0 4 15 19 2 5 10 26 19 13 13 1 0 - -
3 12 11 14 11 25 5 18 0 9 2 26 26 10 24 7 14 20 4 2 - 0 0 -
22 16 4 3 10 21 12 5 21 14 19 5 - 8 5 18 11 5 5 15 0 - 0 0
7 7 14 14 4 16 16 24 24 10 1 7 15 6 10 26 8 18 21 14 1 - - 0

Figure A.5 – Permutation Matrix: IEEE 648 5/6

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. IEEE 802.11N 72

40 - - - 22 - 49 23 43 - - - 1 0 - - - - - - - - - -
50 1 - - 48 35 - - 13 - 30 - - 0 0 - - - - - - - - -
39 50 - - 4 - 2 - - - - 49 - - 0 0 - - - - - - - -
33 - - 38 37 - - 4 1 - - - - - - 0 0 - - - - - - -
45 - - - 0 22 - - 20 42 - - - - - - 0 0 - - - - - -
51 - - 48 35 - - - 44 - 18 - - - - - - 0 0 - - - - -
47 11 - - - 17 - - 51 - - - 0 - - - - - 0 0 - - - -
5 - 25 - 6 - 45 - 13 40 - - - - - - - - - 0 0 - - -
33 - - 34 24 - - - 23 - - 46 - - - - - - - - 0 0 - -
1 - 27 - 1 - - - 38 - 44 - - - - - - - - - - 0 0 -
- 18 - - 23 - - 8 0 35 - - - - - - - - - - - - 0 0
49 - 17 - 30 - - - 34 - - 19 1 - - - - - - - - - - 0

Figure A.6 – Permutation Matrix: IEEE 1296 1/2

39 31 22 43 - 40 4 - 11 - - 50 - - - 6 1 0 - - - - - -
25 52 41 2 6 - 14 - 34 - - - 24 - 37 - - 0 0 - - - - -
43 31 29 0 21 - 28 - - 2 - - 7 - 17 - - - 0 0 - - - -
20 33 48 - 4 13 - 26 - - 22 - - 46 42 - - - - 0 0 - - -
45 7 18 51 12 25 - - - 50 - - 5 - - - 0 - - - 0 0 - -
35 40 32 16 5 - - 18 - - 43 51 - 32 - - - - - - - 0 0 -
9 24 13 22 28 - - 37 - - 25 - - 52 - 13 - - - - - - 0 0
32 22 4 21 16 - - - 27 28 - 38 - - - 8 1 - - - - - - 0

Figure A.7 – Permutation Matrix: IEEE 1296 2/3

39 40 51 41 3 29 8 36 - 14 - 6 - 33 - 11 - 4 1 0 - - - -
48 21 47 9 48 35 51 - 38 - 28 - 34 - 50 - 50 - - 0 0 - - -
30 39 28 42 50 39 5 17 - 6 - 18 - 20 - 15 - 40 - - 0 0 - -
29 0 1 43 36 30 47 - 49 - 47 - 3 - 35 - 34 - 0 - - 0 0 -
1 32 11 23 10 44 12 7 - 48 - 4 - 9 - 17 - 16 - - - - 0 0
13 7 15 47 23 16 47 - 43 - 29 - 52 - 2 - 53 - 1 - - - - 0

Figure A.8 – Permutation Matrix: IEEE 1296 3/4

48 29 37 52 2 16 6 14 53 31 34 5 18 42 53 31 45 - 46 52 1 0 - -
17 4 30 7 43 11 24 6 14 21 6 39 17 40 47 7 15 41 19 - - 0 0 -
7 2 51 31 46 23 16 11 53 40 10 7 46 53 33 35 - 25 35 38 0 - 0 0
19 48 41 1 10 7 36 47 5 29 52 52 31 10 26 6 3 2 - 51 1 - - 0

Figure A.9 – Permutation Matrix: IEEE 1296 5/6

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. IEEE 802.11N 73

57 - - - 50 - 11 - 50 - 79 - 1 0 - - - - - - - - - -
3 - 28 - 0 - - - 55 7 - - - 0 0 - - - - - - - - -
30 - - - 24 37 - - 56 14 - - - - 0 0 - - - - - - - -
62 53 - - 53 - - 3 35 - - - - - - 0 0 - - - - - - -
40 - - 20 66 - - 22 28 - - - - - - - 0 0 - - - - - -
0 - - - 8 - 42 - 50 - - 8 - - - - - 0 0 - - - - -
69 79 79 - - - 56 - 52 - - - 0 - - - - - 0 0 - - - -
65 - - - 38 57 - - 72 - 27 - - - - - - - - 0 0 - - -
64 - - - 14 52 - - 30 - - 32 - - - - - - - - 0 0 - -
- 45 - 70 0 - - - 77 9 - - - - - - - - - - - 0 0 -
2 56 - 57 35 - - - - - 12 - - - - - - - - - - - 0 0
24 - 61 - 60 - - 27 51 - - 16 1 - - - - - - - - - - 0

Figure A.10 – Permutation Matrix: IEEE 1944 1/2

61 75 4 63 56 - - - - - - 8 - 2 17 25 1 0 - - - - - -
56 74 77 20 - - - 64 24 4 67 - 7 - - - - 0 0 - - - - -
28 21 68 10 7 14 65 - - - 23 - - - 75 - - - 0 0 - - - -
48 38 43 78 76 - - - - 5 36 - 15 72 - - - - - 0 0 - - -
40 2 53 25 - 52 62 - 20 - - 44 - - - - 0 - - - 0 0 - -
69 23 64 10 22 - 21 - - - - - 68 23 29 - - - - - - 0 0 -
12 0 68 20 55 61 - 40 - - - 52 - - - 44 - - - - - - 0 0
58 8 34 64 78 - - 11 78 24 - - - - - 58 1 - - - - - - 0

Figure A.11 – Permutation Matrix: IEEE 1944 2/3

48 29 28 39 9 61 - - - 63 45 80 - - - 37 32 22 1 0 - - - -
4 49 42 48 11 30 - - - 49 17 41 37 15 - 54 - - - 0 0 - - -
35 76 78 51 37 35 21 - 17 64 - - - 59 7 - - 32 - - 0 0 - -
9 65 44 9 54 56 73 34 42 - - - 35 - - - 46 39 0 - - 0 0 -
3 62 7 80 68 26 - 80 55 - 36 - 26 - 9 - 72 - - - - - 0 0
26 75 33 21 69 59 3 38 - - - 35 - 62 36 26 - - 1 - - - - 0

Figure A.12 – Permutation Matrix: IEEE 1944 3/4

13 48 80 66 4 74 7 30 76 52 37 60 - 49 73 31 74 73 23 - 1 0 - -
69 63 74 56 64 77 57 65 6 16 51 - 64 - 68 9 48 62 54 27 - 0 0 -
51 15 0 80 24 25 42 54 44 71 71 9 67 35 - 58 - 29 - 53 0 - 0 0
16 29 36 41 44 56 59 37 50 24 - 65 4 65 52 - 4 - 73 52 1 - - 0

Figure A.13 – Permutation Matrix: IEEE 1944 5/6

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] Awais, M. and Condo, C.: Flexible ldpc decoder architectures. VLSI Design, vol. 2012,
2012.

[2] B.P. Lathi and Zhi Ding: Modern Digital and Analog Communication Systems. Oxford
University Press, 2010.

[3] Christian B. Schlegel and Lance C. Pérez: Trellis and Turbo Coding. John Wiley &
Sons Inc., 2004.

[4] Richardson, T.J. and Urbanke, R.L.: Efficient encoding of low-density parity-check
codes. Information Theory, IEEE Transactions on, vol. 47, no. 2, pp. 638–656, 2001.

[5] Stephen Brown and Zvonko Vranesic: Fundamentals of Digital Logic with VHDL
Design. McGraw-Hill, 2009.

[6] Tian Xia and Hsiao-Chun Wu: Novel Blind Identification of LDPC Codes Using the
Average LLR of Syndrome a Posteriori Probability. 2012.

[7] Kschischang, F., Frey, B. and Loeliger, H.-A.: Factor graphs and the sum-product
algorithm. Information Theory, IEEE Transactions on, vol. 47, no. 2, pp. 498–519, Feb
2001. ISSN 0018-9448.

[8] Fossorier, M.: Quasicyclic low-density parity-check codes from circulant permutation
matrices. Information Theory, IEEE Transactions on, vol. 50, no. 8, pp. 1788–1793,
Aug 2004. ISSN 0018-9448.

[9] Wiesel, A., Goldberg, J. and Messer, H.: Non-data-aided signal-to-noise-ratio estima-
tion. In: Communications, 2002. ICC 2002. IEEE International Conference on, vol. 1,
pp. 197–201. 2002.

[10] Peter J. Ashenden: The Designer’s Guide to VHDL. Morgan Kaufman Publishers,
1996.

[11] Chen, X., Lin, S. and Akella, V.: Qsn - a simple circular-shift network for reconfigurable
quasi-cyclic ldpc decoders. Circuits and Systems II: Express Briefs, IEEE Transactions
on, vol. 57, no. 10, pp. 782–786, Oct 2010. ISSN 1549-7747.

[12] Oh, D. and Parhi, K.K.: Area efficient controller design of barrel shifters for reconfigur-
able ldpc decoders. In: Circuits and Systems, 2008. ISCAS 2008. IEEE International
Symposium on, pp. 240–243. IEEE, 2008.

[13] IEEE Std 802.11-2012. March 2012.

[14] Cai, Z., Hao, J., Tan, P., Sun, S. and Chin, P.: Efficient encoding of ieee 802.11 n ldpc
codes. electronics letters, vol. 42, no. 25, pp. 1471–1472, 2006.

74

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 75

[15] Zhou Jing, Huang Zhiping, Su Shaojing and Yang Shadowu: Blind Recognition of
Binary Cyclic Codes. EURASIP Journal on Wireless Communications and Networking,
vol. 218, no. 1, 2013.

[16] Proakis, J.G.: Digital signal processing: principles algorithms and applications. Pearson
Education India, 2007.

[17] Peebles, P.Z., Read, J. and Read, P.: Probability, random variables, and random signal
principles, vol. 3. McGraw-Hill New York, 1987.

[18] Martin Fowler with Rebecca Parsons: Domain-Specific Languages. Addison-Wesley,
2010.

[19] Altera: Cyclone III 3C120 Development Board Reference Manual. Altera Corporation,
March 2009.

[20] Tian Xia and Hsiao-Chun Wu: Blind Identification of Nonbinary LDPC Codes Using
Average LLR of Syndrome a Posteriori Probability. IEEE Communications Letters,
vol. 17, no. 7, pp. 1301–1304, July 2013.

[21] Gappmair, W. and López-Valcarce, R. and Mosquera, C.: Joint nda estimation of car-
rier frequency/phase and snr for linearly modulated signals. Signal Processing Letters,
IEEE, vol. 17, no. 5, pp. 517–520, May 2010. ISSN 1070-9908.

[22] Gallager, R.: Low-density parity-check codes. Information Theory, IRE Transactions
on, vol. 8, no. 1, pp. 21–28, January 1962. ISSN 0096-1000.

[23] MacKay, D.J.C. and Neal, R.M.: Near shannon limit performance of low density parity
check codes. Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar 1997. ISSN 0013-5194.

[24] Tanner, R.: A recursive approach to low complexity codes. Information Theory, IEEE
Transactions on, vol. 27, no. 5, pp. 533–547, Sep 1981. ISSN 0018-9448.

[25] Pearl, J.: Reverend bayes on inference engines: A distributed hierarchical approach.
In: AAAI, pp. 133–136. 1982.

[26] Aji, S. and McEliece, R.: The generalized distributive law. Information Theory, IEEE
Transactions on, vol. 46, no. 2, pp. 325–343, Mar 2000. ISSN 0018-9448.

[27] Loeliger, H.-A.: An introduction to factor graphs. Signal Processing Magazine, IEEE,
vol. 21, no. 1, pp. 28–41, Jan 2004. ISSN 1053-5888.

[28] Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. and Hu, X.-Y.: Reduced-
complexity decoding of ldpc codes. Communications, IEEE Transactions on, vol. 53,
no. 8, pp. 1288–1299, Aug 2005. ISSN 0090-6778.

[29] Jiang, M., Zhao, C., Zhang, L. and Xu, E.: Adaptive offset min-sum algorithm for low-
density parity check codes. Communications Letters, IEEE, vol. 10, no. 6, pp. 483–485,
June 2006. ISSN 1089-7798.

[30] Mansour, M.M. and Shanbhag, N.R.: High-throughput ldpc decoders. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 11, no. 6, pp. 976–996, 2003.

[31] Sun, Y., Karkooti, M. and Cavallaro, J.R.: Vlsi decoder architecture for high through-
put, variable block-size and multi-rate ldpc codes. In: Circuits and Systems, 2007.
ISCAS 2007. IEEE International Symposium on, pp. 2104–2107. IEEE, 2007.

Stellenbosch University https://scholar.sun.ac.za

BIBLIOGRAPHY 76

[32] Sun, Y. and Cavallaro, J.R.: Vlsi architecture for layered decoding of qc-ldpc codes with
high circulant weight. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 21, no. 10, pp. 1960–1964, 2013.

[33] Li, Z., Chen, L., Zeng, L., Lin, S. and Fong, W.H.: Efficient encoding of quasi-cyclic
low-density parity-check codes. Communications, IEEE Transactions on, vol. 54.

[34] Kobayashi, K. and Shibuya, T.: Generalization of lu’s linear time encoding algorithm
for ldpc codes. In: Information Theory and its Applications (ISITA), 2012 International
Symposium on, pp. 16–20. IEEE, 2012.

[35] Shibuya, T.: Block-triangularization of parity check matrices for efficient encoding of
linear codes. In: Information Theory Proceedings (ISIT), 2011 IEEE International
Symposium on, pp. 533–537. IEEE, 2011.

[36] Lu, J. and Moura, J.M.: Linear time encoding of ldpc codes. Information Theory,
IEEE Transactions on, vol. 56, no. 1, pp. 233–249, 2010.

[37] Berrou, C. and Glavieux, A.: Near optimum error correcting coding and decoding:
Turbo-codes. Communications, IEEE Transactions on, vol. 44, no. 10, pp. 1261–1271,
1996.

[38] L. R. Bahl and J. Cocke, F. Jelinek and J. Raviv: Optimal Decoding of Linear Codes
for Minimizing Symbol Error Rate. IEEE Transactions on Information Theory, pp.
284–287, March 1974.

[39] Silvio A. Abrantes: From BCJR to turbo decoding:MAP algorithms made easier, April
2004.

[40] Glavieux, A.: Channel coding in communication networks: from theory to turbocodes,
vol. 667. John Wiley & Sons, 2010.

[41] ETSI, E.: 302 769 v1. 2.1 (2011-04) digital video broadcasting (dvb); frame structure
channel coding and modulation for a second generation digital transmission system for
cable systems (dvb-c2). 2011.

[42] ETSI, T.: 302 755 v1. 3.1 (2012-04): Digital video broadcasting (dvb). Frame struc-
ture channel coding and modulation for a second generation digital terrestrial television
broadcasting system (DVB-T2), 2012.

[43] ETSI, E.: 302 307 v1. 3.1. Digital Video Broadcasting (DVB); Second generation fram-
ing structure, channel coding and modulation systems for Broadcasting, Interactive Ser-
vices, News Gathering and other broadband satellite applications (DVB-S2).

[44] IEEE Std 802.3an-2006. September 2006.

[45] IEEE Std 802.22-2011. July 2011.

[46] IEEE Std 802.15.3c-2009. October 2009.

[47] IEEE Std 802.16-2009. May 2009.

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uitreksel
	Acknowledgements
	List of Figures
	List of Code Snippets
	Nomenclature
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Motivation for Work
	1.3 Objectives
	1.4 Contributions
	1.5 Thesis Overview
	1.5.1 Existing Literature
	1.5.2 System Overview
	1.5.3 Hardware Decoder Design and Code Generation
	1.5.4 Simulation System

	2 Literature Review
	2.1 Digital Communications and Error Correction History
	2.2 LDPC Code History
	2.3 Iterative Codes and the Sum-Product Algorithm
	2.3.1 Acyclic Factor Graphs
	2.3.2 Cyclic Factor Graphs

	2.4 LDPC Decoding
	2.4.1 LDPC Codes Message Formats
	2.4.2 Parity-Check Message Approximations
	2.4.3 LDPC Message Passing Algorithms

	2.5 General LDPC Encoding
	2.5.1 Lookup Table
	2.5.2 Triangular Parity-Check Matrix
	2.5.3 Approximate Triangular Parity-Check Matrix
	2.5.4 Block-Triangular parity-check Matrix
	2.5.5 Generic Graph Based Algorithm

	2.6 Quasi-cyclic LDPC codes
	2.7 LDPC Code Detection

	3 System Design
	3.1 Decoder Concept
	3.2 Simulation Subsystem
	3.3 Code Generation Subsystem

	4 Hardware Design
	4.1 Clock Synchronisation
	4.2 Message Format
	4.3 Transcendental Functions
	4.4 Fixed Point versus Floating Point
	4.5 Sign Magnitude versus Two's Complement Format
	4.6 Message Passing Schedule
	4.7 Decoder Design
	4.7.1 Interconnection Network
	4.7.2 Bit Module
	4.7.3 RAM
	4.7.4 ROM
	4.7.5 Parity-check Module
	4.7.6 Detection Module
	4.7.7 Control Module
	4.7.8 Timing Overview

	5 Software Design
	5.1 Code Generation Subsystem
	5.2 Simulation Subsystem
	5.3 Test Environment

	6 Simulation Results
	7 Conclusion
	A IEEE 802.11n
	Bibliography

